Jan Rottmayer


Chair for Scientific Computing
RPTU Kaiserslautern-Landau
Paul-Ehrlich-Straße 34 / Geb. 36
D-67663 Kaiserslautern

Office: 36-410
Phone: +49 (0)631 205 5639
Email: jan.rottmayer@scicomp.uni-kl.de

jan_profile

Profile

I am a researcher in data-driven modeling and machine learning, with a focus on surrogate modeling and surrogate-based optimization. My current work investigates Bayesian Optimization using Bayesian Neural Networks for expensive black-box optimization tasks, including aerodynamic shape optimization.
I hold a background in mechanical engineering, having completed my bachelor’s studies through a dual study program with BASF, Germany’s largest chemical company. My master’s research focused on reduced-order modeling and optimal flow control. In addition, I have published work on the generation of synthetic ground-penetrating radargrams using generative adversarial networks (GANs).

I am also associated with the DFG-Graduiertenkolleg 2982 “Mathematics of Interdisciplinary Multiobjective Optimization (MIMO)”.

Talks


  • Solving Distributionally Robust Optimization Problems Efficiently via Surrogate Models, EUROGEN, 17.09.2025, Lahti, Finnland.
  • Gradient-enhanced BNN Surrogate Models for Aerodynamic Shape Optimization, AG Turbo, 06.03.2025, Cologne, Germany.
  • Sobolev Learning for Bayesian Neural Network Assisted Aerodynamic Shape Optimization, STAB Konferenz, 13.11.2024, Regensburg, Germany.
  • Bayesian Neural Network Surrogate Models for Aerodynamic Shape Optimization, AG Turbo, 08.10.2024, Dresden, Germany.
  • Bayesian Neural Network Surrogates for Efficient Global Optimization of an Airfoil Geometry, ECCOMAS 2024, 07.06.2024, Lisbon, Portugal.
  • Neural Network Surrogates for Efficient Global Optimization, AG Turbo, 07.03.2024, Darmstadt, Germany.
  • Gradient Enhanced Surrogate Modeling Framework for Aerodynamic Design Optimization, AIAA Scitech 2024, 12.01.2024, Orlando FL, USA.
  • Multi-Fidelity Aerodynamic Design Optimization Framework using Gradient Asissted
    Surrogate Modeling
    , EUROGEN 2023, 02.06.2023, Crete, Greece.
  • Trailing Edge Noise Reduction by Porous Treatment using Derivative-Free Optimization, Scientific Computing Seminar, 05.01.2023, Kaiserslautern, Germany.
  • Flow Control via Reduced Order Models, Scientific Computing Seminar, 18.11.2021, Kaiserslautern, Germany.
  • Reduced Order Modeling and Nonlinear System Identification Techniques for Fluid Dynamics, Scientific Computing Seminar, 22.04.2021, Kaiserslautern, Germany.

Publications


2025

A. Cappiello, A. Rausa, B. Munguía, D. Divyaprakash, E. van der Weide, E. C. Bunschoten, F. A. van Steen, J. Rottmayer, J. Blühdorn, J. A. Kelly, L. Bachmann, M. Sagebaum, N. A. Beishuizen, O. Burghardt, P. Gomes, R. Khedkar, V. Wani, SU2 Foundation, all SU2 authors

SU2 version 8.3.0 "Harrier" Miscellaneous

2025, (software).

Links | BibTeX

L. Chen, E. Özkaya, J. Rottmayer, N.R. Gauger, Z. Shen, Y. Ye

Adjoint-Based Aerodynamic Shape Optimization with a Manifold Constraint Learned by Diffusion Models Miscellaneous

arXiv:2507.23443, 2025.

Links | BibTeX

2024

L. Chen, J. Rottmayer, L. Kusch, N. R.Gauger, Y. Ye,

Data-driven aerodynamic shape design with distributionally robust optimization approaches Journal Article

In: Computer Methods in Applied Mechanics and Engineering, vol. 429, pp. 117131, 2024, ISSN: 0045-7825.

Abstract | Links | BibTeX

E. Özkaya , J. Rottmayer, N.R. Gauger

Gradient Enhanced Surrogate Modeling Framework for Aerodynamic Design Optimization Journal Article

In: AIAA 2024-2670, 2024.

Links | BibTeX

2023

L. Chen, J. Rottmayer, L. Kusch, N.R. Gauger, Y. Ye

Data-driven aerodynamic shape design with distributionally robust optimization approaches Miscellaneous

arXiv:2310.08931, 2023.

Links | BibTeX

J. Rottmayer, E. Özkaya, S. Satcunanathan, B. Y. Zhou, M. Aehle, N. R. Gauger, M. Meinke, W. Schröder, S. Pullin

Trailing-Edge Noise Reduction using Porous Treatment and Surrogate-based Global Optimization Miscellaneous

arXiv:2301.13047, 2023.

Links | BibTeX

2021

A. Fazeel, J. Rottmayer, R.Mehta; N. Bajcinca

GPR-GANs: Generation of Synthetic Ground Penetrating Radargrams Using Generative Adversarial Networks Conference

2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2021.

Links | BibTeX