2024
G. Suarez, E. Özkaya, N.R. Gauger, H. Steiner, M. Schäfer, D. Naumann
Nonlinear Surrogate Model Design for Aerodynamic Dataset Generation Based on Artificial Neural Networks Journal Article
In: Aerospace, vol. 11, iss. 8, 2024, ISSN: 2226-4310.
@article{aerospace11080607,
title = {Nonlinear Surrogate Model Design for Aerodynamic Dataset Generation Based on Artificial Neural Networks},
author = {G. Suarez, E. Özkaya, N.R. Gauger, H. Steiner, M. Schäfer, D. Naumann},
doi = {10.3390/aerospace11080607},
issn = {2226-4310},
year = {2024},
date = {2024-07-24},
urldate = {2024-07-24},
journal = {Aerospace},
volume = {11},
issue = {8},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
T. Kortus, R. Keidel, N.R. Gauger, Bergen pCT Collaboration
Exploring End-to-end Differentiable Neural Charged Particle Tracking – A Loss Landscape Perspective Miscellaneous
arXiv:2407.13420 [physics.comp-ph], 2024.
@misc{nokey,
title = {Exploring End-to-end Differentiable Neural Charged Particle Tracking - A Loss Landscape Perspective},
author = {T. Kortus, R. Keidel, N.R. Gauger, Bergen pCT Collaboration},
url = {https://arxiv.org/abs/2407.13420},
year = {2024},
date = {2024-07-19},
urldate = {2024-07-19},
howpublished = {arXiv:2407.13420 [physics.comp-ph]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
M. Aehle, X. T. Nguyen, M. Novák, T. Dorigo, N. R. Gauger, J. Kieseler, M. Klute, V. Vassilev
Efficient Forward-Mode Algorithmic Derivatives of Geant4 Miscellaneous
arXiv:2407.02966 [physics.comp-ph], 2024.
@misc{nokey,
title = {Efficient Forward-Mode Algorithmic Derivatives of Geant4},
author = {M. Aehle, X. T. Nguyen, M. Novák, T. Dorigo, N. R. Gauger, J. Kieseler, M. Klute, V. Vassilev},
url = {https://arxiv.org/abs/2407.02966},
year = {2024},
date = {2024-07-03},
urldate = {2024-07-03},
howpublished = {arXiv:2407.02966 [physics.comp-ph]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
L. Chen, J. Rottmayer, L. Kusch, N. R.Gauger, Y. Ye,
Data-driven aerodynamic shape design with distributionally robust optimization approaches Journal Article
In: Computer Methods in Applied Mechanics and Engineering, vol. 429, pp. 117131, 2024, ISSN: 0045-7825.
@article{nokeyr,
title = {Data-driven aerodynamic shape design with distributionally robust optimization approaches},
author = {L. Chen, J. Rottmayer, L. Kusch, N. R.Gauger, Y. Ye, },
url = {https://doi.org/10.1016/j.cma.2024.117131},
issn = {0045-7825},
year = {2024},
date = {2024-06-15},
urldate = {2024-06-15},
journal = {Computer Methods in Applied Mechanics and Engineering},
volume = {429},
pages = {117131},
abstract = {We formulate and solve data-driven aerodynamic shape design problems with distributionally robust optimization (DRO) approaches. DRO aims to minimize the worst-case expected performance in a set of distributions that is informed by observed data with uncertainties. Building on the findings of the work Gotoh, et al. (2018), we study the connections between a class of DRO and robust design optimization, which is classically based on the mean–variance (standard deviation) optimization formulation pioneered by Taguchi. Our results provide a new perspective to the understanding and formulation of robust design optimization problems. It enables data-driven and statistically principled approaches to quantify the trade-offs between robustness and performance, in contrast to the classical robust design formulation that captures uncertainty only qualitatively. Our preliminary computational experiments on aerodynamic shape optimization in transonic turbulent flow show promising design results.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Aehle, M. Novák, V. Vassilev, N. R. Gauger, L. Heinrich, M. Kagan, D. Lange
Optimization Using Pathwise Algorithmic Derivatives of Electromagnetic Shower Simulations Miscellaneous
arXiv:2405.07944 [physics.comp-ph], 2024.
@misc{nokey,
title = {Optimization Using Pathwise Algorithmic Derivatives of Electromagnetic Shower Simulations},
author = {M. Aehle, M. Novák, V. Vassilev, N. R. Gauger, L. Heinrich, M. Kagan, D. Lange},
url = {http://arxiv.org/abs/2405.07944},
year = {2024},
date = {2024-05-14},
howpublished = {arXiv:2405.07944 [physics.comp-ph]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
J. Blühdorn, N. R. Gauger
Local Adjoints for Simultaneous Preaccumulations with Shared Inputs Miscellaneous
arXiv:2405.07819 [cs.MS], 2024.
@misc{BluehdornG2024,
title = {Local Adjoints for Simultaneous Preaccumulations with Shared Inputs},
author = {J. Blühdorn, N. R. Gauger},
url = {https://arxiv.org/abs/2405.07819},
year = {2024},
date = {2024-05-13},
urldate = {2024-05-13},
howpublished = {arXiv:2405.07819 [cs.MS]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
J. Blühdorn, P. Gomes, M. Aehle, N. R. Gauger
Hybrid Parallel Discrete Adjoints in SU2 Miscellaneous
arXiv:2405.06056 [cs.MS], 2024.
@misc{BluehdornGAG2024,
title = {Hybrid Parallel Discrete Adjoints in SU2},
author = {J. Blühdorn, P. Gomes, M. Aehle, N. R. Gauger},
url = {https://arxiv.org/abs/2405.06056},
year = {2024},
date = {2024-05-09},
urldate = {2024-05-09},
howpublished = {arXiv:2405.06056 [cs.MS]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
A. Hnatiuk, L. Kusch, J. Kusch, N. R. Gauger, A. Walther
Stochastic Aspects of Dynamical Low-Rank Approximation in the Context of Machine Learning Journal Article
In: Optimization Online, 2024.
@article{nokey,
title = {Stochastic Aspects of Dynamical Low-Rank Approximation in the Context of Machine Learning},
author = {A. Hnatiuk, L. Kusch, J. Kusch, N. R. Gauger, A. Walther},
url = {https://optimization-online.org/?p=25971},
year = {2024},
date = {2024-03-23},
urldate = {2024-03-23},
journal = {Optimization Online},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
C.M. Ubal, N. Beishuizen, L. Kusch, J. van Oijen
Adjoint-based design optimization of a Kenics static mixer Journal Article
In: Results in Engineering, 2024.
@article{nokey,
title = {Adjoint-based design optimization of a Kenics static mixer},
author = {C.M. Ubal, N. Beishuizen, L. Kusch, J. van Oijen},
url = {https://doi.org/10.1016/j.rineng.2024.101856},
year = {2024},
date = {2024-02-05},
urldate = {2024-02-05},
journal = {Results in Engineering},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
L. Chen, K. U. Bletzinger, N. R.Gauger, Y. Ye,
A gradient descent akin method for constrained optimization: algorithms and applications Journal Article
In: Optimization Methods and Software, 2024.
@article{nokey,
title = {A gradient descent akin method for constrained optimization: algorithms and applications},
author = {L. Chen, K. U. Bletzinger, N. R.Gauger, Y. Ye, },
url = {https://doi.org/10.1080/10556788.2023.2285450},
year = {2024},
date = {2024-01-16},
urldate = {2024-01-16},
journal = {Optimization Methods and Software},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
E. Özkaya , J. Rottmayer, N.R. Gauger
Gradient Enhanced Surrogate Modeling Framework for Aerodynamic Design Optimization Journal Article
In: AIAA 2024-2670, 2024.
@article{nokey,
title = {Gradient Enhanced Surrogate Modeling Framework for Aerodynamic Design Optimization},
author = {E. Özkaya , J. Rottmayer, N.R. Gauger},
doi = {10.2514/6.2024-2670},
year = {2024},
date = {2024-01-04},
urldate = {2024-01-04},
journal = {AIAA 2024-2670},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2023
T. Kortus, R. Keidel, N.R. Gauger, Bergen pCT Collaboration
Towards Neural Charged Particle Tracking in Digital Tracking Calorimeters With Reinforcement Learning Journal Article
In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 12, pp. 15820-15833, 2023.
@article{KKG2023,
title = {Towards Neural Charged Particle Tracking in Digital Tracking Calorimeters With Reinforcement Learning},
author = {T. Kortus, R. Keidel, N.R. Gauger, Bergen pCT Collaboration},
url = {https://doi.org/10.1109/TPAMI.2023.3305027},
doi = {10.1109/TPAMI.2023.3305027},
year = {2023},
date = {2023-12-01},
urldate = {2023-12-01},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
volume = {45},
number = {12},
pages = {15820-15833},
howpublished = {TechRxiv 21717323.v1},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Aehle, J. Alme, C. Arata, I. Arsene, I. Bearden, T. Bodova, V. Borshchov, O. Bourrion, M. Bregant, A. van den Brink, V. Buchakchiev, A. Buhl, T. Chujo, L. Dufke, V. Eikeland, M. Fasel, N. Gauger, A. Gautam, A. Ghimouz, Y. Goto, R. Guernane, T. Hachiya, H. Hassan, L. He, H. Helstrup, L. Huhta, M. Inaba, T. Isidori, F. Jonas, T.Kawaguchi, R. Keidel, M. Kim, V. Kozhuharov, T. Kumaoka, L. Kusch, et al.
Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter Miscellaneous
arXiv:2311.07413 [physics.ins-det], 2023.
@misc{nokey,
title = {Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter},
author = {M. Aehle, J. Alme, C. Arata, I. Arsene, I. Bearden, T. Bodova, V. Borshchov, O. Bourrion, M. Bregant, A. van den Brink, V. Buchakchiev, A. Buhl, T. Chujo, L. Dufke, V. Eikeland, M. Fasel, N. Gauger, A. Gautam, A. Ghimouz, Y. Goto, R. Guernane, T. Hachiya, H. Hassan, L. He, H. Helstrup, L. Huhta, M. Inaba, T. Isidori, F. Jonas, T.Kawaguchi, R. Keidel, M. Kim, V. Kozhuharov, T. Kumaoka, L. Kusch, et al.},
url = {https://arxiv.org/abs/2311.07413},
year = {2023},
date = {2023-11-13},
urldate = {2023-11-13},
howpublished = {arXiv:2311.07413 [physics.ins-det]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
M. Aehle, J. Alme, G. Barnaföldi, J. Blühdorn, T. Bodova, V. Borshchov, A. van den Brink, V. Eikeland, G. Feofilov, C. Garth, N. R. Gauger, et al.
Exploration of Differentiability in a Proton Computed Tomography Simulation Framework Journal Article
In: Physics in Medicine and Biology, vol. 68, no. 24, pp. 244002, 2023.
@article{aehle_exploration_2023,
title = {Exploration of Differentiability in a Proton Computed Tomography Simulation Framework},
author = {M. Aehle, J. Alme, G. Barnaföldi, J. Blühdorn, T. Bodova, V. Borshchov, A. van den Brink, V. Eikeland, G. Feofilov, C. Garth, N. R. Gauger, et al.},
url = {https://iopscience.iop.org/article/10.1088/1361-6560/ad0bdd},
doi = {10.1088/1361-6560/ad0bdd},
year = {2023},
date = {2023-11-10},
urldate = {2023-11-10},
journal = {Physics in Medicine and Biology},
volume = {68},
number = {24},
pages = {244002},
howpublished = {arXiv:2202.05551},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
L. Chen, J. Rottmayer, L. Kusch, N.R. Gauger, Y. Ye
Data-driven aerodynamic shape design with distributionally robust optimization approaches Miscellaneous
arXiv:2310.08931, 2023.
@misc{CRKGY2023,
title = {Data-driven aerodynamic shape design with distributionally robust optimization approaches},
author = {L. Chen, J. Rottmayer, L. Kusch, N.R. Gauger, Y. Ye},
url = {https://arxiv.org/pdf/2310.08931.pdf},
year = {2023},
date = {2023-10-13},
urldate = {2023-10-13},
howpublished = {arXiv:2310.08931},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
T. Dorigo, M. Aehle, J. Donini, M. Doro, N. R. Gauger, R. Izbicki, A. Lee, L. Masserano, F. Nardi, Sidharth S S, A. Shen
End-To-End Optimization of the Layout of a Gamma Ray Observatory Miscellaneous
arXiv:2310.01857, 2023.
@misc{nokey,
title = {End-To-End Optimization of the Layout of a Gamma Ray Observatory},
author = {T. Dorigo, M. Aehle, J. Donini, M. Doro, N. R. Gauger, R. Izbicki, A. Lee, L. Masserano, F. Nardi, Sidharth S S, A. Shen},
url = {https://arxiv.org/abs/2310.01857},
year = {2023},
date = {2023-10-03},
urldate = {2023-10-03},
howpublished = { arXiv:2310.01857},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
M. Aehle, L. Arsini, R. Belén Barreiro, A. Belias, F. Bury, S. Cebrian, A. Demin, J. Dickinson, J. Donini, T. Dorigo, M. Doro, N. R. Gauger, A. Giammanco, L. Gray, B. S. González, V. Kain, J. Kieseler, L. Kusch, et al.
Progress in End-to-End Optimization of Detectors for Fundamental Physics with Differentiable Programming Miscellaneous
arXiv:2310.05673, 2023.
@misc{nokey,
title = {Progress in End-to-End Optimization of Detectors for Fundamental Physics with Differentiable Programming},
author = {M. Aehle, L. Arsini, R. Belén Barreiro, A. Belias, F. Bury, S. Cebrian, A. Demin, J. Dickinson, J. Donini, T. Dorigo, M. Doro, N. R. Gauger, A. Giammanco, L. Gray, B. S. González, V. Kain, J. Kieseler, L. Kusch, et al.},
url = {https://arxiv.org/abs/2310.05673},
year = {2023},
date = {2023-09-30},
howpublished = {arXiv:2310.05673},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
A. Schilling, M. Aehle, J. Alme, G. Barnaföldi, T. Bodova, V. Borshchov, A. van den Brink, V. Eikeland, G. Feofilov, C. Garth, N.R. Gauger, et al.
Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter Journal Article
In: Phys. Med. Biol., vol. 68, no. 194001, 2023.
@article{SchillingEtAl2023,
title = {Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter},
author = {A. Schilling, M. Aehle, J. Alme, G. Barnaföldi, T. Bodova, V. Borshchov, A. van den Brink, V. Eikeland, G. Feofilov, C. Garth, N.R. Gauger, et al.},
url = {https://iopscience.iop.org/article/10.1088/1361-6560/acf5c2/pdf},
year = {2023},
date = {2023-09-20},
urldate = {2023-09-20},
journal = {Phys. Med. Biol.},
volume = {68},
number = {194001},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
J. Blühdorn, N. R. Gauger
Automatic Differentiation of OpenMP with OpDiLib Miscellaneous
NHR Conference ’23 — Book of Abstracts (extended version), pp. 176–177, 2023, (poster contribution).
@misc{BG2023,
title = {Automatic Differentiation of OpenMP with OpDiLib},
author = {J. Blühdorn, N. R. Gauger},
url = {https://www.nhr-verein.de/sites/default/files/2024-01/NHR%20Conference%202023%20-%20Book%20of%20Abstracts.pdf},
year = {2023},
date = {2023-09-18},
urldate = {2023-09-18},
howpublished = {NHR Conference '23 -- Book of Abstracts (extended version), pp. 176--177},
note = {poster contribution},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
M. Sagebaum; M. Aehle; N. R. Gauger
Integrating Enzyme-generated functions into CoDiPack Miscellaneous
arXiv:2307.06075, 2023.
@misc{sagebaum2023integrating,
title = {Integrating Enzyme-generated functions into CoDiPack},
author = {M. Sagebaum and M. Aehle and N. R. Gauger},
url = {https://arxiv.org/abs/2307.06075},
year = {2023},
date = {2023-07-13},
urldate = {2023-07-13},
abstract = {In operator overloading algorithmic differentiation, it can be beneficial to create custom derivative functions for some parts of the code base. For manual implementations of the derivative functions, it can be quite cumbersome to derive, implement, test, and maintain these. The process can be automated with source transformation algorithmic differentiation tools like Tapenade or compiler-based algorithmic differentiation tools like Enzyme. This eliminates most of the work required from a manual implementation but usually has the same efficiency with respect to timing and memory. We present a new helper in CoDiPack that allows Enzyme-generated derivative functions to be automatically added during the recording process of CoDiPack. The validity of the approach is demonstrated on a synthetic benchmark, which shows promising results.},
howpublished = { arXiv:2307.06075},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
T. Dorigo, A. Giammanco, P. Vischia, M. Aehle, M. Bawaj, A. Boldyrev, P. de Castro Manzano, D. Derkach, J. Donini, A. Edelen, F. Fanzago, N.R. Gauger, et al.
Toward the end-to-end optimization of particle physics instruments with differentiable programming Journal Article
In: Reviews in Physics, 2023.
@article{MODE2023a,
title = {Toward the end-to-end optimization of particle physics instruments with differentiable programming},
author = {T. Dorigo, A. Giammanco, P. Vischia, M. Aehle, M. Bawaj, A. Boldyrev, P. de Castro Manzano, D. Derkach, J. Donini, A. Edelen, F. Fanzago, N.R. Gauger, et al.},
url = {https://doi.org/10.1016/j.revip.2023.100085},
year = {2023},
date = {2023-05-25},
urldate = {2023-05-25},
journal = {Reviews in Physics},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Sagebaum, J. Blühdorn, N.R. Gauger, J. Backhaus, C. Frey, G. Geiser, F. Bayer, E. Kügeler, C. Battistoni, M. Nagel
On recent developments for efficient turbomachinery design using algorithmic differentiation Journal Article
In: Proceedings of 15th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics (ETC15), no. ETC2023-346, 2023.
@article{SBGetal2023,
title = {On recent developments for efficient turbomachinery design using algorithmic differentiation},
author = {M. Sagebaum, J. Blühdorn, N.R. Gauger, J. Backhaus, C. Frey, G. Geiser, F. Bayer, E. Kügeler, C. Battistoni, M. Nagel},
doi = {10.29008/ETC2023-346 },
year = {2023},
date = {2023-04-26},
urldate = {2023-04-26},
journal = {Proceedings of 15th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics (ETC15)},
number = {ETC2023-346},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Sagebaum, N.R. Gauger
Aggregated type handling in CoDiPack Journal Article
In: Proc. Appl. Math. Mech., vol. 22, iss. 1, no. e202200208, 2023.
@article{SaGau2023,
title = {Aggregated type handling in CoDiPack},
author = {M. Sagebaum, N.R. Gauger},
doi = {10.1002/pamm.202200208},
year = {2023},
date = {2023-03-27},
urldate = {2023-03-01},
journal = {Proc. Appl. Math. Mech.},
volume = {22},
number = {e202200208},
issue = {1},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
J. Blühdorn, M. Sagebaum, N. R. Gauger
Event-Based Automatic Differentiation of OpenMP with OpDiLib Journal Article
In: ACM Transactions on Mathematical Software, vol. 49, iss. 1, no. 3, pp. 1–31, 2023.
@article{nokey,
title = {Event-Based Automatic Differentiation of OpenMP with OpDiLib},
author = {J. Blühdorn, M. Sagebaum, N. R. Gauger},
doi = {10.1145/3570159},
year = {2023},
date = {2023-03-21},
urldate = {2023-03-21},
journal = {ACM Transactions on Mathematical Software},
volume = {49},
number = {3},
issue = {1},
pages = {1--31},
abstract = {We present the new software OpDiLib, a universal add-on for classical operator overloading AD tools that enables the automatic differentiation (AD) of OpenMP parallelized code. With it, we establish support for OpenMP features in a reverse mode operator overloading AD tool to an extent that was previously only reported on in source transformation tools. We achieve this with an event-based implementation ansatz that is unprecedented in AD. Combined with modern OpenMP features around OMPT, we demonstrate how it can be used to achieve differentiation without any additional modifications of the source code; neither do we impose a priori restrictions on the data access patterns, which makes OpDiLib highly applicable. For further performance optimizations, restrictions like atomic updates on adjoint variables can be lifted in a fine-grained manner. OpDiLib can also be applied in a semi-automatic fashion via a macro interface, which supports compilers that do not implement OMPT. We demonstrate the applicability of OpDiLib for a pure operator overloading approach in a hybrid parallel environment. We quantify the cost of atomic updates on adjoint variables and showcase the speedup and scaling that can be achieved with the different configurations of OpDiLib in both the forward and the reverse pass.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
L. Chen, K. Bletzinger, N.R. Gauger, Y. Ye
A gradient descent akin method for constrained optimization: algorithms and applications Miscellaneous
arXiv:2302.11898, 2023.
@misc{CBGY2023,
title = {A gradient descent akin method for constrained optimization: algorithms and applications},
author = {L. Chen, K. Bletzinger, N.R. Gauger, Y. Ye},
url = {https://arxiv.org/pdf/2302.11898.pdf
https://arxiv.org/abs/2302.11898},
year = {2023},
date = {2023-02-23},
urldate = {2023-02-23},
howpublished = {arXiv:2302.11898},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
M. Aehle, J. Alme, G.G. Barnaföldi, T. Bodova, V. Borshchov, A. van den Brink, M. Chaar, V. Eikeland, G. Feofilov, C. Garth, N. R. Gauger, G. Genov, O. Grøttvik, H. Helstrup, S. Igolkin, R. Keidel, et al.
The Bergen proton CT system Journal Article
In: Journal of Instrumentation, vol. 18, no. 2, 2023.
@article{nokey,
title = {The Bergen proton CT system},
author = {M. Aehle, J. Alme, G.G. Barnaföldi, T. Bodova, V. Borshchov, A. van den Brink, M. Chaar, V. Eikeland, G. Feofilov, C. Garth, N. R. Gauger, G. Genov, O. Grøttvik, H. Helstrup, S. Igolkin, R. Keidel, et al.},
url = {https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02051},
year = {2023},
date = {2023-02-01},
urldate = {2023-02-01},
journal = {Journal of Instrumentation},
volume = {18},
number = {2},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
J. Rottmayer, E. Özkaya, S. Satcunanathan, B. Y. Zhou, M. Aehle, N. R. Gauger, M. Meinke, W. Schröder, S. Pullin
Trailing-Edge Noise Reduction using Porous Treatment and Surrogate-based Global Optimization Miscellaneous
arXiv:2301.13047, 2023.
@misc{nokey,
title = {Trailing-Edge Noise Reduction using Porous Treatment and Surrogate-based Global Optimization},
author = {J. Rottmayer, E. Özkaya, S. Satcunanathan, B. Y. Zhou, M. Aehle, N. R. Gauger, M. Meinke, W. Schröder, S. Pullin
},
url = {https://arxiv.org/abs/2301.13047},
year = {2023},
date = {2023-01-30},
urldate = {2023-01-30},
howpublished = {arXiv:2301.13047},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
2022
M. Aehle, J. Blühdorn, M. Sagebaum, N.R. Gauger
Reverse-Mode Automatic Differentiation of Compiled Programs Miscellaneous
arXiv:2212.13760, 2022.
@misc{nokey,
title = {Reverse-Mode Automatic Differentiation of Compiled Programs},
author = {M. Aehle, J. Blühdorn, M. Sagebaum, N.R. Gauger},
url = {https://arxiv.org/pdf/2212.13760.pdf},
year = {2022},
date = {2022-12-28},
urldate = {2022-12-28},
howpublished = {arXiv:2212.13760},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
M. Aehle, M. Bawaj, A. Belias, A. Boldyrev, P. de Castro Manzano, C. Delaere, D. Derkach, J. Donini, T. Dorigo, A. Edelen, P. Elmer, F. Fanzago, N. R. Gauger, et al.
Exploiting Differentiable Programming for the End-to-end Optimization of Detectors Miscellaneous
2022.
@misc{nokey,
title = {Exploiting Differentiable Programming for the End-to-end Optimization of Detectors},
author = {M. Aehle, M. Bawaj, A. Belias, A. Boldyrev, P. de Castro Manzano, C. Delaere, D. Derkach, J. Donini, T. Dorigo, A. Edelen, P. Elmer, F. Fanzago, N. R. Gauger, et al.},
url = {https://indico.ph.tum.de/event/7050/contributions/6355/attachments/4455/5678/submission_nupecc.pdf},
year = {2022},
date = {2022-10-25},
urldate = {2022-10-25},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
M. Aehle, J. Blühdorn, M. Sagebaum, N. R. Gauger
Forward-Mode Automatic Differentiation of Compiled Programs Miscellaneous
arXiv:2209.01895, 2022.
@misc{nokey,
title = {Forward-Mode Automatic Differentiation of Compiled Programs},
author = {M. Aehle, J. Blühdorn, M. Sagebaum, N. R. Gauger},
url = {https://arxiv.org/pdf/2209.01895},
year = {2022},
date = {2022-09-05},
urldate = {2022-09-05},
abstract = {Algorithmic differentiation (AD) is a set of techniques to obtain accurate derivatives of a computer-implemented function in an automatic fashion. State-of-the-art AD tools rely on the source code of the implementation or internal representations of compilers building it.
We present the new AD tool Derivgrind, which augments the machine code of compiled programs with forward AD logic. Derivgrind leverages the Valgrind instrumentation framework for a structured access to the machine code, and a shadow memory tool to store dot values. Depending on the application scenario, no access to the source code is required at all, or the access is restricted to the parts defining input and output variables.
Derivgrind's versatility comes at the price of scaling the running time by a factor between 60 and 140, measured on a benchmark based on a PDE solver. Results of our extensive test suite indicate that Derivgrind produces correct results on GCC- and Clang-compiled programs, including a Python interpreter, with a small number of exceptions. While we provide a list of scenarios that Derivgrind does not handle correctly, most of them are academic examples or originate from highly optimized math libraries. We will therefore further study the potential of our tool in more complex software projects. },
howpublished = {arXiv:2209.01895},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
We present the new AD tool Derivgrind, which augments the machine code of compiled programs with forward AD logic. Derivgrind leverages the Valgrind instrumentation framework for a structured access to the machine code, and a shadow memory tool to store dot values. Depending on the application scenario, no access to the source code is required at all, or the access is restricted to the parts defining input and output variables.
Derivgrind’s versatility comes at the price of scaling the running time by a factor between 60 and 140, measured on a benchmark based on a PDE solver. Results of our extensive test suite indicate that Derivgrind produces correct results on GCC- and Clang-compiled programs, including a Python interpreter, with a small number of exceptions. While we provide a list of scenarios that Derivgrind does not handle correctly, most of them are academic examples or originate from highly optimized math libraries. We will therefore further study the potential of our tool in more complex software projects.
F. Givois, M. Kabel, N.R. Gauger
QFT-based Homogenization Miscellaneous
arXiv:2207.12949 , 2022.
@misc{GKG2022a,
title = {QFT-based Homogenization},
author = {F. Givois, M. Kabel, N.R. Gauger},
url = {https://arxiv.org/pdf/2207.12949.pdf},
year = {2022},
date = {2022-08-26},
howpublished = {arXiv:2207.12949 },
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
T. Dick, N.R. Gauger, S. Schmidt
Combining Sobolev smoothing with parameterized shape optimization Journal Article
In: Computers & Fluids, vol. Vol. 244, 2022.
@article{DiGauSchmi2022,
title = {Combining Sobolev smoothing with parameterized shape optimization},
author = {T. Dick, N.R. Gauger, S. Schmidt},
url = {https://www.sciencedirect.com/science/article/abs/pii/S0045793022001839},
doi = {https://doi.org/10.1016/j.compfluid.2022.105568},
year = {2022},
date = {2022-08-15},
urldate = {2022-08-15},
journal = {Computers & Fluids},
volume = {Vol. 244},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
P. Harder, D. Watson-Parris, P. Stier, D. Strassel, N.R. Gauger, J. Keuper
Physics-Informed Learning of Aerosol Microphysics Miscellaneous
arXiv:2207.11786 , 2022.
@misc{HWSSGK2022a,
title = {Physics-Informed Learning of Aerosol Microphysics},
author = {P. Harder, D. Watson-Parris, P. Stier, D. Strassel, N.R. Gauger, J. Keuper},
url = {https://arxiv.org/pdf/2207.11786.pdf},
year = {2022},
date = {2022-07-24},
urldate = {2022-07-24},
howpublished = {arXiv:2207.11786 },
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
O. Burghardt, P. Dehpanah, N.R. Gauger
Stabilization and Acceleration of Coupled Discrete Adjoint Solvers in Multi-Disciplinary Optimization Journal Article
In: AIAA 2022-3787, 2022.
@article{BuDeGa2022,
title = {Stabilization and Acceleration of Coupled Discrete Adjoint Solvers in Multi-Disciplinary Optimization},
author = {O. Burghardt, P. Dehpanah, N.R. Gauger},
doi = {https://doi.org/10.2514/6.2022-3787},
year = {2022},
date = {2022-06-29},
urldate = {2022-06-29},
journal = {AIAA 2022-3787},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
R. Sanchez, E. Özkaya, N.R. Gauger
Adjoint-Based Sensitivity Analysis in High-Temperature Fluid Flows with Paticipating Media Book Chapter
In: pp. 125-150, Modeling, Simulation and Optimization in the Health-and Energy-Sector, Vol. 14. Springer, Cham, 2022.
@inbook{SaOeGau2022,
title = {Adjoint-Based Sensitivity Analysis in High-Temperature Fluid Flows with Paticipating Media},
author = {R. Sanchez, E. Özkaya, N.R. Gauger},
url = {https://doi.org/10.1007/978-3-030-99983-4_7},
year = {2022},
date = {2022-06-20},
urldate = {2022-06-20},
pages = {125-150},
edition = {Modeling, Simulation and Optimization in the Health-and Energy-Sector, Vol. 14. Springer, Cham},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
R. Ram, D. Grünewald, N.R. Gauger
Scalable Hybrid Parallel ILU Preconditioner to Solve Sparse Linear Systems Journal Article
In: Parallel Processing Workshops. Euro-Par 2021. Lecture Notes in Computer Science, Vol. 13098. Springer, Cham, pp. 540-544, 2022.
@article{RaGrueGau2022ab,
title = {Scalable Hybrid Parallel ILU Preconditioner to Solve Sparse Linear Systems},
author = {R. Ram, D. Grünewald, N.R. Gauger},
url = {https://doi.org/10.1007/978-3-031-06156-1_46},
year = {2022},
date = {2022-06-09},
urldate = {2022-06-09},
journal = {Parallel Processing Workshops. Euro-Par 2021. Lecture Notes in Computer Science, Vol. 13098. Springer, Cham},
pages = {540-544},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
R. Ram, D. Grünewald, N.R. Gauger
Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS Journal Article
In: High Performance Computing. ISC High Performance 2022. Lecture Notes in Computer Science, Vol. 13289. Springer, Cham, pp. 334–353, 2022.
@article{RaGrueGau2022b,
title = {Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS},
author = {R. Ram, D. Grünewald, N.R. Gauger},
url = {https://doi.org/10.1007/978-3-031-07312-0_17},
year = {2022},
date = {2022-05-29},
urldate = {2022-05-29},
journal = {High Performance Computing. ISC High Performance 2022. Lecture Notes in Computer Science, Vol. 13289. Springer, Cham},
pages = {334–353},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
T. Dorigo, A. Giammanco, P. Vischia, M. Aehle, M. Bawaj, A. Boldyrev, P. de Castro Manzano, D. Derkach, J. Donini, A. Edelen, F. Fanzago, N. R. Gauger, et al.
Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper Miscellaneous
arXiv:2203.13818, 2022.
@misc{nokey,
title = {Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper},
author = {T. Dorigo, A. Giammanco, P. Vischia, M. Aehle, M. Bawaj, A. Boldyrev, P. de Castro Manzano, D. Derkach, J. Donini, A. Edelen, F. Fanzago, N. R. Gauger, et al.},
url = {https://arxiv.org/pdf/2203.13818},
doi = {https://doi.org/10.48550/arXiv.2203.13818},
year = {2022},
date = {2022-03-22},
urldate = {2022-03-22},
abstract = {The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, given the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, "experience-driven" layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized by means of a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters.
In this document we lay down our plans for the design of a modular and versatile modeling tool for the end-to-end optimization of complex instruments for particle physics experiments as well as industrial and medical applications that share the detection of radiation as their basic ingredient. We consider a selected set of use cases to highlight the specific needs of different applications. },
howpublished = {arXiv:2203.13818},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
In this document we lay down our plans for the design of a modular and versatile modeling tool for the end-to-end optimization of complex instruments for particle physics experiments as well as industrial and medical applications that share the detection of radiation as their basic ingredient. We consider a selected set of use cases to highlight the specific needs of different applications.
M. Aehle, J. Alme, G. Barnaföldi, J. Blühdorn, T. Bodova, V. Borshchov, A. van den Brink, M. Chaar, V. Eikeland, G. Feofilov, C. Garth, N.R. Gauger, et al.
Derivatives in Proton CT Miscellaneous
arXiv: 2202.05551v1, 2022.
@misc{SIVERT2022,
title = {Derivatives in Proton CT},
author = {M. Aehle, J. Alme, G. Barnaföldi, J. Blühdorn, T. Bodova, V. Borshchov, A. van den Brink, M. Chaar, V. Eikeland, G. Feofilov, C. Garth, N.R. Gauger, et al.},
url = {https://arxiv.org/pdf/2202.05551v1.pdf},
year = {2022},
date = {2022-02-14},
urldate = {2022-02-14},
abstract = {Algorithmic derivatives can be useful to quantify uncertainties and optimize parameters using computer simulations. Whether they actually are, depends on how "well-linearizable" the program is. Proton computed tomography (pCT) is a medical imaging technology with the potential to increase the spatial accuracy of the dose delivered in proton-beam radiotherapy. The Bergen pCT collaboration is developing and constructing a digital tracking calorimeter (DTC) to measure the position, direction and energy of protons after they passed through a patient, and a software pipeline to process these data into a pCT image. We revisit the software pipeline from the perspective of algorithmic differentiation (AD). In the early subprocedures, several obstacles such as discrete variables or frequent discontinuities were identified, and are probably tackled best by using surrogate models. The model-based iterative reconstruction (MBIR) subprocedure in the end seems to be AD-ready, and we propose changes in the AD workflow that can reduce the memory consumption in reverse mode.},
howpublished = {arXiv: 2202.05551v1},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
O. Burghardt, P. Gomes, T. Kattmann, T. Economon, N.R. Gauger, R. Palacios
Discrete adjoint methodology for general multiphysics problems Journal Article
In: Structural and Multidisciplinary Optimization, vol. 65, no. 28, 2022.
@article{BGKEGP22,
title = {Discrete adjoint methodology for general multiphysics problems},
author = {O. Burghardt, P. Gomes, T. Kattmann, T. Economon, N.R. Gauger, R. Palacios },
url = {https://doi.org/10.1007/s00158-021-03117-5},
year = {2022},
date = {2022-01-06},
urldate = {2022-01-06},
journal = {Structural and Multidisciplinary Optimization},
volume = {65},
number = {28},
keywords = {},
pubstate = {published},
tppubtype = {article}
}