#include <iostream>
#include <codi.hpp>
#include "outputHelpers.hpp"
template<typename Real>
for(size_t i = 0; i < n; i += 1) {
alpha += a[i] * b[i];
aNorm += a[i] * a[i];
bNorm += b[i] * b[i];
}
aNorm = sqrt(aNorm);
bNorm = sqrt(bNorm);
alpha = acos(alpha / (aNorm * bNorm));
}
int main(int nargs, char** args) {
int mode = 1;
if(2 <= nargs) {
mode = std::stoi(args[1]);
if(mode < 1 || 2 < mode) {
std::cerr << "Error: Please enter a mode from 1 to 2, it was '" << mode << "'." << std::endl;
std::cerr << " Mode 1: separate evaluation of Hessian and Jacobian" << std::endl;
std::cerr << " Mode 2: combined evaluation of Hessian and Jacobian" << std::endl;
exit(-1);
}
}
TH th;
const size_t n = 10;
std::vector<Real> a(n);
std::vector<Real> b(n);
for(size_t i = 0; i < n; i += 1) {
a[i] = i;
b[i] = pow(-1, i);
}
th.startRecording();
for(size_t i = 0; i < n; i += 1) {
th.registerInput(a[i]);
}
for(size_t i = 0; i < n; i += 1) {
th.registerInput(b[i]);
}
Real alpha, aNorm, bNorm;
dotWithNorms(a.data(), b.data(), n, alpha, aNorm, bNorm);
th.registerOutput(alpha);
th.registerOutput(aNorm);
th.registerOutput(bNorm);
th.stopRecording();
TH::JacobianType& jac = th.createJacobian();
TH::HessianType& hes = th.createHessian();
if(1 == mode) {
th.evalJacobian(jac);
th.evalHessian(hes);
} else {
th.evalHessian(hes, jac);
}
printVector("a", a, n, 0);
printVector("b", b, n, 0);
std::cout << std::endl;
printJacCol("Jacobian with respect to alpha: ", jac, 0);
printJacCol("Jacobian with respect to aNorm: ", jac, 1);
printJacCol("Jacobian with respect to bNorm: ", jac, 2);
std::cout << std::endl;
printHesForOutput("Hessian with respect to alpha: ", hes, 0);
printHesForOutput("Hessian with respect to aNorm: ", hes, 1);
printHesForOutput("Hessian with respect to bNorm: ", hes, 2);
TH::Real* x = th.createPrimalVectorInput();
TH::Real* y = th.createPrimalVectorOutput();
for(size_t i = 0; i < n; i += 1) {
x[0 + i] = i * i;
x[n + i] = pow(-1, i + 1);
}
if(1 == mode) {
th.evalJacobianAt(x, jac, y);
th.evalHessian(hes);
} else {
th.evalHessianAt(x, hes, y, jac);
}
std::cout << std::endl;
std::cout << "Reevaluation at new location:" << std::endl;
printVector("a", x, n, 0);
printVector("b", x, n, n);
std::cout << std::endl;
printJacCol("Jacobian with respect to alpha: ", jac, 0);
printJacCol("Jacobian with respect to aNorm: ", jac, 1);
printJacCol("Jacobian with respect to bNorm: ", jac, 2);
std::cout << std::endl;
printHesForOutput("Hessian with respect to alpha: ", hes, 0);
printHesForOutput("Hessian with respect to aNorm: ", hes, 1);
printHesForOutput("Hessian with respect to bNorm: ", hes, 2);
TH::Gradient* x_b = th.createGradientVectorInput();
TH::Gradient* y_b = th.createGradientVectorOutput();
y_b[0] = {1.0, 0.0, 0.0, 0.0};
y_b[1] = {0.0, 1.0, 0.0, 0.0};
y_b[2] = {0.0, 0.0, 1.0, 0.0};
th.evalReverse(y_b, x_b);
std::cout << "Reverse evaluation for alpha_b:" << std::endl;
printVectorDim("a_b", x_b, n, 0, 0);
printVectorDim("b_b", x_b, n, n, 0);
std::cout << std::endl;
std::cout << "Reverse evaluation for aNorm_b:" << std::endl;
printVectorDim("a_b", x_b, n, 0, 1);
printVectorDim("b_b", x_b, n, n, 1);
std::cout << std::endl;
std::cout << "Reverse evaluation for bNorm_b:" << std::endl;
printVectorDim("a_b", x_b, n, 0, 2);
printVectorDim("b_b", x_b, n, n, 2);
th.deleteGradientVector(x_b);
th.deleteGradientVector(y_b);
th.deletePrimalVector(x);
th.deletePrimalVector(y);
th.deleteJacobian(jac);
th.deleteHessian(hes);
return 0;
}
RealReversePrimalIndexGen< RealForwardVec< 4 >, Direction< RealForwardVec< 4 >, 4 > > HessianComputationType
A regular CoDiPack type that can be used for Hessian computations in the TapeHelper.
Definition codi.hpp:231
See TapeHelperBase.
Definition tapeHelper.hpp:642
Demonstration of the TapeHelper class for a simplified handling of CoDiPack tapes. For a detailed documentation please see the TapeHelper documentation.