CoDiPack  2.3.0
A Code Differentiation Package
SciComp TU Kaiserslautern
Loading...
Searching...
No Matches
Example 18 - EvaluationHelper function object declaration

Goal: Possible definitions of function objects for the codi::EvaluationHelper

Prerequisite: None

Function:

template<typename Real>
void dotWithNorms(Real const* a, Real const* b, size_t n, Real& alpha, Real& aNorm, Real& bNorm) {
alpha = Real(); // Dot product is accumulated in alpha
aNorm = Real();
bNorm = Real();
for(size_t i = 0; i < n; i += 1) {
alpha += a[i] * b[i];
aNorm += a[i] * a[i];
bNorm += b[i] * b[i];
}
aNorm = sqrt(aNorm);
bNorm = sqrt(bNorm);
alpha = acos(alpha / (aNorm * bNorm));
}

Full code:

#include <iostream>
#include <codi.hpp>
#include "outputHelpers.hpp"
template<typename Real>
void dotWithNorms(Real const* a, Real const* b, size_t n, Real& alpha, Real& aNorm, Real& bNorm) {
alpha = Real(); // Dot product is accumulated in alpha
aNorm = Real();
bNorm = Real();
for(size_t i = 0; i < n; i += 1) {
alpha += a[i] * b[i];
aNorm += a[i] * a[i];
bNorm += b[i] * b[i];
}
aNorm = sqrt(aNorm);
bNorm = sqrt(bNorm);
alpha = acos(alpha / (aNorm * bNorm));
}
#ifndef DOXYGEN_DISABLE
struct WrapperDotWithNorms {
size_t n;
WrapperDotWithNorms(size_t n) : n(n) {}
template<typename VecX, typename VecY>
void operator() (VecX const &x, VecY &y) {
dotWithNorms(&x[0], &x[this->n], this->n, y[0], y[1], y[2]);
}
};
#endif
int main(int nargs, char** args) {
int mode = 1;
if(2 <= nargs) {
mode = std::stoi(args[1]);
if(mode < 1 || 3 < mode) {
std::cerr << "Error: Please enter a mode from 1 to 3, it was '" << mode << "'." << std::endl;
std::cerr << " Mode 1: Function object" << std::endl;
std::cerr << " Mode 2: C++11 lambda" << std::endl;
std::cerr << " Mode 1: C++14 generic lambda" << std::endl;
exit(-1);
}
}
size_t const n = 10;
size_t const xSize = 2 * n;
std::vector<double> x(xSize);
for(size_t i = 0; i < n; i += 1) {
// vector a
x[0 + i] = i;
// vector b
x[n + i] = pow(-1, i);
}
auto jac = EH::createJacobian(3, xSize);
auto hes = EH::createHessian(3, xSize);
if(1 == mode) { // Function object
std::cout << "Using a structure function object." << std::endl;
WrapperDotWithNorms wrapDotWithNorms(n);
EH::evalJacobian(wrapDotWithNorms, x, 3, jac);
EH::evalHessian(wrapDotWithNorms, x, 3, hes);
} else if(2 == mode) { // C++11 lambda
std::cout << "Using a C++11 lambda." << std::endl;
auto lambdaWrapDotWithNorms = [](std::vector<EH::HessianComputationType> const &x, std::vector<EH::HessianComputationType> &y) {
dotWithNorms(&x[0], &x[n], n, y[0], y[1], y[2]);
};
EH::evalJacobianAndHessian(lambdaWrapDotWithNorms, x, 3, jac, hes);
} else if(3 == mode) { // C++14 generic lambda
#if 201402L <= __cplusplus
std::cout << "Using a C++14 generic lambda." << std::endl;
auto lambdaWrapDotWithNorms = [n](auto const&x, auto &y) {
dotWithNorms(&x[0], &x[n], n, y[0], y[1], y[2]);
};
EH::evalJacobian(lambdaWrapDotWithNorms, x, 3, jac);
EH::evalHessian(lambdaWrapDotWithNorms, x, 3, hes);
#else
std::cerr << "Error: Compile with C++14 to use generic lambdas." << std::endl;
exit(-1);
#endif
} else {
std::cerr << "Error: Undefined mode '" << mode << "'." << std::endl;
exit(-1);
}
printVector("a", x, n, 0);
printVector("b", x, n, n);
std::cout << std::endl;
printJacCol("Jacobian with respect to alpha: ", jac, 0);
printJacCol("Jacobian with respect to aNorm: ", jac, 1);
printJacCol("Jacobian with respect to bNorm: ", jac, 2);
std::cout << std::endl;
printHesForOutput("Hessian with respect to alpha: ", hes, 0);
printHesForOutput("Hessian with respect to aNorm: ", hes, 1);
printHesForOutput("Hessian with respect to bNorm: ", hes, 2);
return 0;
}

Demonstration of different function objcects for the EvaluationHelper class. For a detailed documentation please see the EvaluationHelper documentation.