CoDiPack  2.3.0
A Code Differentiation Package
SciComp TU Kaiserslautern
Loading...
Searching...
No Matches
Example 9 - OpenMP reverse evaluation

Goal: Use OpenMP to evaluate different adjoint vectors at the same time.

Prerequisite: Example 2 - Custom adjoint vector evaluation

Function: Simple vector valued function

template<typename Real>
void func(const Real* x, size_t l, Real* y) {
y[0] = 0.0;
y[1] = 1.0;
for(size_t i = 0; i < l; ++i) {
y[0] += x[i];
y[1] *= x[i];
}
}

Full code:

#include <codi.hpp>
#include <iostream>
#include <omp.h>
template<typename Real>
void func(const Real* x, size_t l, Real* y) {
y[0] = 0.0;
y[1] = 1.0;
for(size_t i = 0; i < l; ++i) {
y[0] += x[i];
y[1] *= x[i];
}
}
int main(int nargs, char** args) {
using Tape = typename Real::Tape;
Real x[5];
Real y[2];
x[0] = 1.0;
x[1] = 2.0;
x[2] = 3.0;
x[3] = 4.0;
x[4] = 5.0;
// Step 1: Perform a regular recording
Tape& tape = Real::getTape();
tape.setActive();
for(size_t i = 0; i < 5; ++i) {
tape.registerInput(x[i]);
}
func(x, 5, y);
tape.registerOutput(y[0]);
tape.registerOutput(y[1]);
tape.setPassive();
codi::Jacobian<double> jacobian(2,5);
#pragma omp parallel num_threads(2)
{
int tid = omp_get_thread_num();
codi::CustomAdjointVectorHelper<Real, double> vh; // Step 1: Create the vector helper for each thread
// Step 2: Perform a regular vector helper reverse evaluation
vh.gradient(y[tid].getIdentifier()) = 1.0;
vh.evaluate();
for(size_t i = 0; i < 5; ++i) {
jacobian(tid,i) = vh.getGradient(x[i].getIdentifier());
}
}
std::cout << "Custom adjoint vector helper:" << std::endl;
std::cout << "f(1 .. 5) = (" << y[0] << ", " << y[1] << ")" << std::endl;
std::cout << "df/dx (1 .. 5) = \n" << jacobian << std::endl;
tape.reset();
}

tape.evaluate() can not be used with OpenMP since both threads would use the internal adjoint vector of the tape concurrently.