CoDiPack  2.3.0
A Code Differentiation Package
SciComp TU Kaiserslautern
Loading...
Searching...
No Matches
Example 12 - Manual statement creation

Goal: Add a statement with manually computed primal and Jacobian values to the tape.

Prerequisite: Tutorial 2 - Reverse mode AD

Function: 2D polynomial

// Evaluates w = (1 y y^2 ... y^(n-1)) A (1 x x^2 ... x^(n-1))^T (Standard 2D polynomial evaluation)
template<typename Real>
Real poly2D( const Real x, const Real y, const double* A, size_t n) {
Real w = Real();
Real curX = (Real)1.0;
for(size_t i = 0; i < n; ++i) {
Real curY = (Real)1.0;
for(size_t j = 0; j < n; ++j) {
w += A[i + j * n] * curX * curY;
curY *= y;
}
curX *= x;
}
return w;
}

Full code:

#include <codi.hpp>
#include <iostream>
#include <algorithm>
using Tape = typename Real::Tape;
// Evaluates w = (1 y y^2 ... y^(n-1)) A (1 x x^2 ... x^(n-1))^T (Standard 2D polynomial evaluation)
template<typename Real>
Real poly2D( const Real x, const Real y, const double* A, size_t n) {
Real w = Real();
Real curX = (Real)1.0;
for(size_t i = 0; i < n; ++i) {
Real curY = (Real)1.0;
for(size_t j = 0; j < n; ++j) {
w += A[i + j * n] * curX * curY;
curY *= y;
}
curX *= x;
}
return w;
}
template<typename Real>
Real poly2D_dx( const Real x, const Real y, const double* A, size_t n) {
Real w = Real();
Real curX = (Real)1.0;
for(size_t i = 1; i < n; ++i) {
Real curY = (Real)1.0;
for(size_t j = 0; j < n; ++j) {
w += (Real)i * A[i + j * n] * curX * curY;
curY *= y;
}
curX *= x;
}
return w;
}
template<typename Real>
Real poly2D_dy( const Real x, const Real y, const double* A, size_t n) {
Real w = Real();
Real curX = (Real)1.0;
for(size_t i = 0; i < n; ++i) {
Real curY = (Real)1.0;
for(size_t j = 1; j < n; ++j) {
w += (Real)j * A[i + j * n] * curX * curY;
curY *= y;
}
curX *= x;
}
return w;
}
void runExample(int mode) {
Real u = 3.0;
Tape& tape = Real::getTape();
tape.setActive();
tape.registerInput(u);
double A[3*3] = { 1.0, 0.5, 0.25,
0.0, 1.0, 0.75,
0.25, 0.0, 1.0};
Real x = cos(u);
Real y = sin(u);
Real o;
// Step 1: Create the helper
if(1 == mode) { // No special handling
std::cout << "Running regular differentiation without statement handling." << std::endl;
o = poly2D(x, y, A, 3);
} else if(2 == mode) { // External function with primal function implementation
std::cout << "Running differentiation with manual statement handling: seperate push of Jacobians." << std::endl;
// Step 2: Compute the value with regular double values.
double o_p = poly2D(x.getValue(), y.getValue(), A, 3);
double jac[2];
jac[0] = poly2D_dx(x.getValue(), y.getValue(), A, 3);
jac[1] = poly2D_dy(x.getValue(), y.getValue(), A, 3);
// Step 3: Push the statement on the tape
ph.pushArgument(x, jac[0]);
ph.pushArgument(y, jac[1]);
ph.endPushStatement(o, o_p);
} else if(3 == mode) { // External function with passive primal call
std::cout << "Running differentiation with manual statement handling: Array push of Jacobians." << std::endl;
// Step 2: Compute the value with regular double values.
double o_p = poly2D(x.getValue(), y.getValue(), A, 3);
double jac[2];
jac[0] = poly2D_dx(x.getValue(), y.getValue(), A, 3);
jac[1] = poly2D_dy(x.getValue(), y.getValue(), A, 3);
codi::RealReverse input[2] = {x, y};
// Step 3: Push the statement on the tape
ph.pushStatement(o, o_p, input, jac, 2);
} else {
std::cerr << "Error: Unknown mode '" << mode << "'." << std::endl;
}
codi::RealReverse w = exp(o * o);
tape.registerOutput(w);
tape.setPassive();
w.setGradient(1.0);
tape.evaluate();
std::cout << "Solution w: " << w << std::endl;
std::cout << "Adjoint u: " << u.getGradient() << std::endl;
tape.printStatistics();
tape.reset();
}
int main(int nargs, char** args) {
runExample(1);
runExample(2);
runExample(3);
return 0;
}
void pushStatement(Type &lhs, Real const &primal, ArgIter const startArg, ArgIter const endArg, JacobiIter const startJac)
Push a complete statement where the Jacobians and arguments are provided as iterator objects.
Definition statementPushHelper.hpp:86
Add statements to the tape where the Jacobians are computed manually.
Definition statementPushHelper.hpp:138
void endPushStatement(Type &lhs, Real const &primal)
Finish the push of a statement. Performs lhs = primal and cleans up all data.
Definition statementPushHelper.hpp:187
void startPushStatement()
Initialize all data for the push of a statement.
Definition statementPushHelper.hpp:161
void pushArgument(Type const &arg, Real const &jacobian)
Add the Jacobian of an argument of the statement.
Definition statementPushHelper.hpp:166

Two different ways to push a statement are presented - the environment startPushStamenent()/endPushStament() and the call pushStatement(). For both ways it is mandatory that the Jacobian values are computed outside of the taping process. This is done by disabling the tape or by computing with non CoDiPack values.

The first way requires three steps:

The second way requires only one call to one of the pushStatement functions. These calls will always push a complete statement.

The statement helper can be used to push multiple statements on the tape. It resets itself each time a complete statement is pushed.

The tape statistics output in the example shows reduction of stored items on the tape.