Goal: Add a special handling of linear system solvers to your code.
Prequesties: Tutorial 2 - Reverse mode AD
Function:
template<typename Type>
void func(Matrix<Type> const& A, Vector<Type> const& rhs, Vector<Type>& sol) {
sol = A.colPivHouseholderQr().solve(rhs);
}
- The example demonstrates how the already implemented Eigen wrapper for the linear system handling can be used.
- In case you are using Eigen, then you only need to extend from codi::EigenLinearSystem and define which solver you are using:
template<typename T>
using Matrix = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;
template<typename T>
using Vector = Eigen::Matrix<T, Eigen::Dynamic, 1>;
template<typename Type>
void func(Matrix<Type> const& A, Vector<Type> const& rhs, Vector<Type>& sol) {
sol = A.colPivHouseholderQr().solve(rhs);
}
template<typename Number>
public:
using Base = codi::EigenLinearSystem<Number, Matrix, Vector>;
std::cout << "Solve system says hello!!!" << std::endl;
func(*A, *b, *x);
}
};
- For an abitrary lineary system solver, you have to implement the interface codi::LinearSystemInterface. Please have a look at codi::EigenLinearSystem and the class documentation of codi::LinearSystemInterface.
- Most of the methods are iterators for matrices and vectors as well as creation and deletion methods for the matrices and vectors.
Full code:
#include <codi.hpp>
#include <iostream>
#if CODI_EnableEigen
template<typename T>
using Matrix = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;
template<typename T>
using Vector = Eigen::Matrix<T, Eigen::Dynamic, 1>;
template<typename Type>
void func(Matrix<Type> const& A, Vector<Type> const& rhs, Vector<Type>& sol) {
sol = A.colPivHouseholderQr().solve(rhs);
}
template<typename Number>
public:
using Base = codi::EigenLinearSystem<Number, Matrix, Vector>;
std::cout << "Solve system says hello!!!" << std::endl;
func(*A, *b, *x);
}
};
#else
#warning EIGEN_DIR not set. Skipping Eigen example.
#endif
int main(int nargs, char** args) {
#if CODI_EnableEigen
int size = 10;
Matrix<Real> A(size, size);
Vector<Real> rhs(size);
Vector<Real> sol(size);
tape.setActive();
Real matrixEntry = 1.0;
Real rhsEntry = 1.0;
tape.registerInput(matrixEntry);
tape.registerInput(rhsEntry);
for(int i = 0; i < size; i += 1) {
A(i,i) = matrixEntry;
if(i + 1 != size) {
A(i, i + 1) = matrixEntry;
}
rhs(i) = rhsEntry;
}
std::cout << "Solving primal system:" << std::endl;
Real y = 0.0;
for(int i = 0; i < size; i += 1) {
y += sol(i);
}
tape.registerOutput(y);
tape.setPassive();
std::cout << "Running reverse evaluation:" << std::endl;
tape.evaluate();
std::cout << "y = " << y << std::endl;
std::cout <<
"dy/d matrixEntry = " << matrixEntry.
getGradient() << std::endl;
std::cout <<
"dy/d rhsEntry = " << rhsEntry.
getGradient() << std::endl;
tape.reset();
#else
std::cerr << "EIGEN_DIR not set. Skipping Eigen example." << std::endl;
#endif
return 0;
}