17 July 2025 University of Kaiserslautern-Landau

Multidisciplinary Design Optimization for Next-Generation Sustainable Aircraft

Rauno Cavallaro, PhD

Associate Professor,
Department of Aerospace Engineering,
Universidad Carlos III de Madrid

Universidad Carlos III de Madrid



- Public, young (created in 1989), and bilingual
 - 73% of degrees in English or bilingual
 - 2nd ranked public University in Spain (Employability)
- One of the most international:
 - 23% of students & 14% academics are foreign
 - 51% student opted for international mobility
 - *Incoming/outgoing students* ~2000 / 2000 (1st in Spain)
- Well-balanced from a gender perspective:
 - undergraduates: 54% women / 46% men
- Mid-size:

	undergraduate:	17.000
--	----------------	--------

• graduate: 5.500

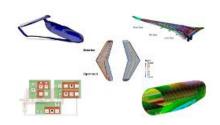
academic staff: 2.000

4 campuses in Madrid region

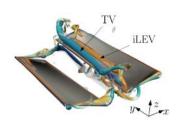
Leganés: School of Engineering (EPS)

~45% of UC3M

20 undergraduate degrees


39 master degrees

11 PhD programs

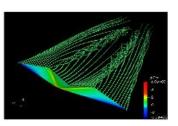

UC3M - Aerospace Engineering Department

- Born in **2010**
- 13 Permanent Professors (35% non-Spanish)
- ~75 people (counting also Assistant prof., Post-Docs & PhDs students)
- Recognized with prestigious grants/awards:
 - 3 ERC StG (European Research Council)
 - 1 Ramon y Cajal Fellowship (Spanish Government)
 - 1 Senior Beatriz Galindo Fellowship (Spanish Government)
 - 3 Leonardo Grants (BBVA Foundation)/
- Covering 6 research areas

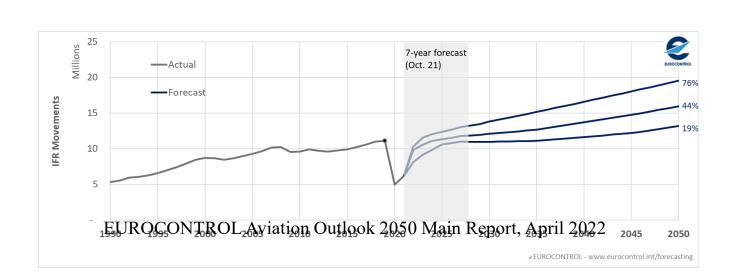
Aeroelastic and Structural Design Lab (ASDLab)

Computational Fluid Dynamics Lab

Dynamics and Control in Aerospace Systems


Experimental Aerodynamics and Propulsion Lab

Plasma and Space Propulsion Team (EP2)


Tethers Applied to Aerospace Engineering

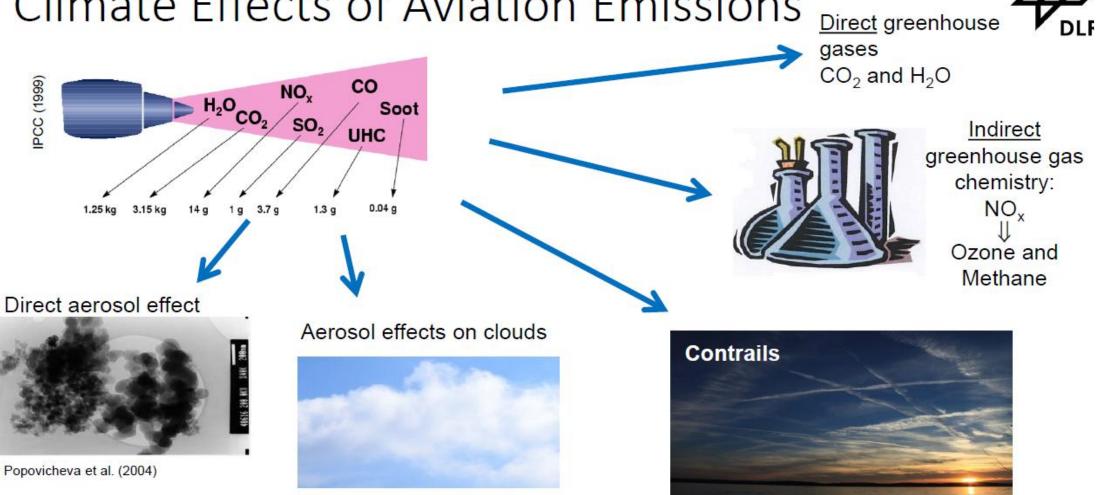
Agenda

- 1. Presentation (UC3M, Aerospace Engineering Department,...)
- 2. Motivation for Sustainable Aviation
- 3. MDO for sustainable aviation. Applications
 - a. Hybrid-electric Large Aspect Ratio Wings
 - b. Highly flexible wings

- Air traffic has **rebounded**: 2024 flights at **96% of 2019** levels, emissions at **98%**
- 2025 emissions are projected to exceed 2019 levels (\uparrow **4%).**
- Forecast: +40% flights by 2050 in Europe (~15.4 million flights).
- Aviation contributes ~4% of EU GHG, ~13.9% of transport emissions, but non-CO₂ effects double its climate impact
- Despite efficiency gains, CO_2 per passenger-km down only ~1–2% per year.

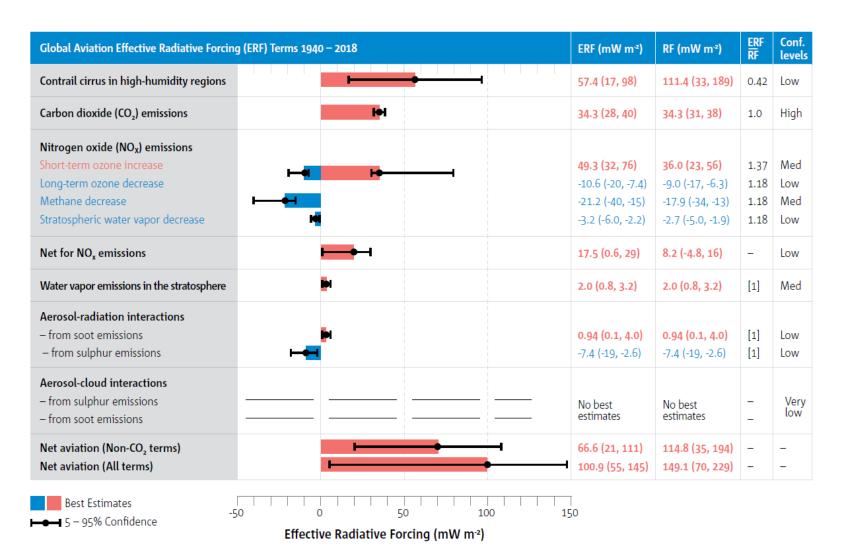
30-YEARFORECAST **2022-2050**

16 MILLION
FLIGHTS BY 2050
(RANGE: 13.2-19.6 MILLION)
UP 44% ON 2019

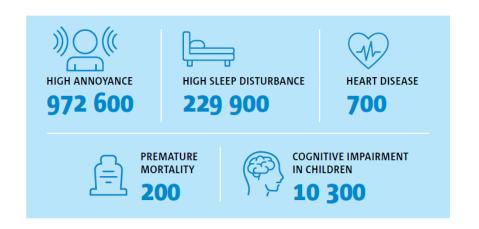

- 10-YEAR LAG SINCE PREVIOUS LONG-TERM FORECAST (2018).
- MIDDLE-EAST & ASIA/PACIFIC: MOST DYNAMIC FLOWS WITH ECAC BY 2050.

Need to act fast

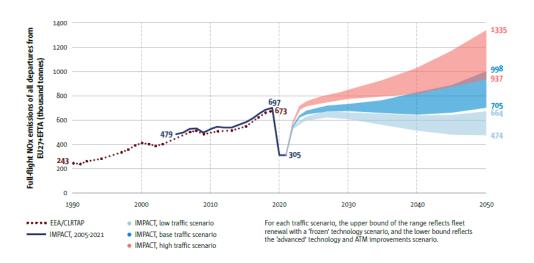
If some **intermediate goals** are not implemented immediately and **achieved by 2030**, the opportunity for transformation will slip away, leaving the world to face the escalating climate impacts of a rapidly growing aviation sector, which is projected to at least double by 2050.


Not only CO2

Climate Effects of Aviation Emissions

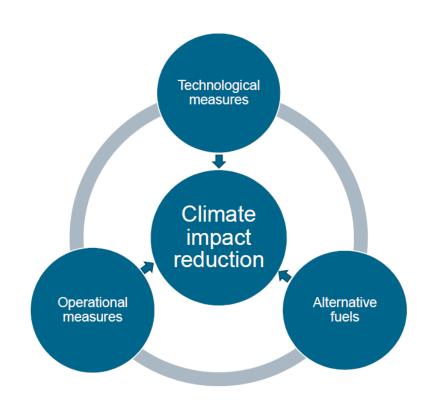

Not only CO2

non-CO2 emissions represent the largest fraction of the total ERF of aviation, at present, **although** the level of uncertainties from the non-CO2 effects is 8 times larger than that from CO2, and the overall confidence levels of the largest non-CO2 effects are 'low'.



Three main aspects

- Climate change
- Two aspects related to "direct" effects on population living close to airports. Concept of LAQN (Local Air Quality and Noise)
 - Local Air Quality (LAQ)
 - Noise

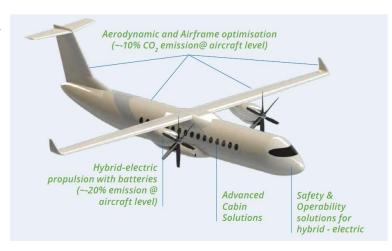


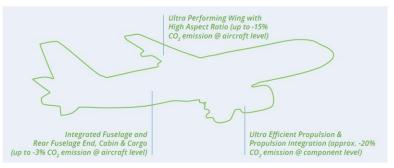
Sustainable aviation focuses on minimizing the environmental impact of air travel by adopting

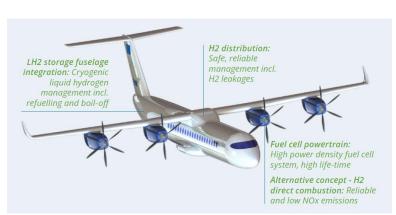
- Advanced technologies
 - Replace old aircraft of fleets
 - Next generation aircraft (disruptive technology)
- Alternative fuels, and
- Efficient operations
 - Ground/Flight operations
 - ATC efficiency
 - Exploring innovative technologies like **electric and hydrogen** propulsion.

Clean Aviation's aircraft concepts

Entry-Into-Service in 2035






Designing Disruptive Aircraft: A Multidisciplinary Challenge

- Decarbonization goals demand disruptive architectures
 - hybrid-electric, hydrogen
 - novel configurations
- Break with legacy
 - no historical data
 - no baseline designs
 - Multiple tightly coupled disciplines
 - Aerodynamics, structures, propulsion, thermal management, systems, ...
- Sustainability adds new dimensions:
 - emissions, energy
 - lifecycle
 - regulatory constraints.

In hybrid-electric systems, propulsion sizing depends

- on thermal management,
- which in turn affects weight and drag.

H2 aircraft, the LH2 tank volume and placement impact

- the aerodynamic shape,
- center of gravity, and
- structural layout simultaneously.

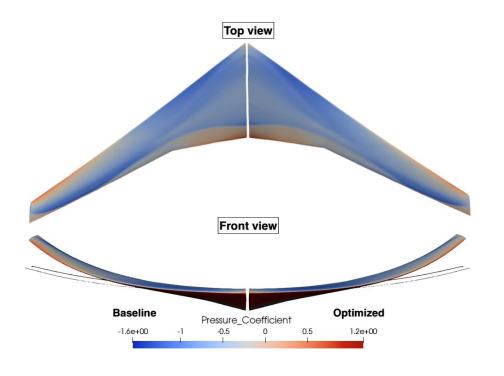
No Historical Data = Need for Physics-Based, Integrated Models

- Legacy aircraft had empirical decoupling
 - "this works because it always worked."
- Disruptive aircraft lack validated trends
 - models must be fully coupled
 - and physics-based from the start
- Optimization must happen in this complex, high-dimensional space
 - enter MDO.

While aircraft have always required coordination between disciplines, disruptive designs amplify these dependencies to the point where traditional sequential approaches become insufficient.

MDO isn't new, what's new is that **it's now indispensable**. Legacy aircraft "tolerated" approximation. Sustainable aircraft, with tight energy and emission constraints, do not.

Applications


Application 1

- Improving Local Air Quality and Noise
- Hybrid-electric powertrain
- Strut-braced wing
- New Operations (trajectories)

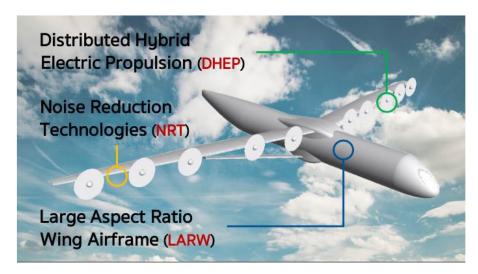
Application 2

- Highly-flexible wings
 - Emission reduction

Application 1 - INDIGO

INDIGO project

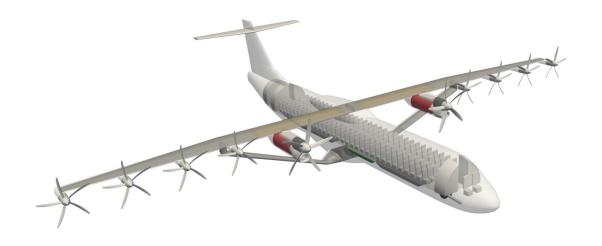
HORIZON-CL5-2022-D5-01-12: Towards a silent and ultra-low local air pollution aircraft

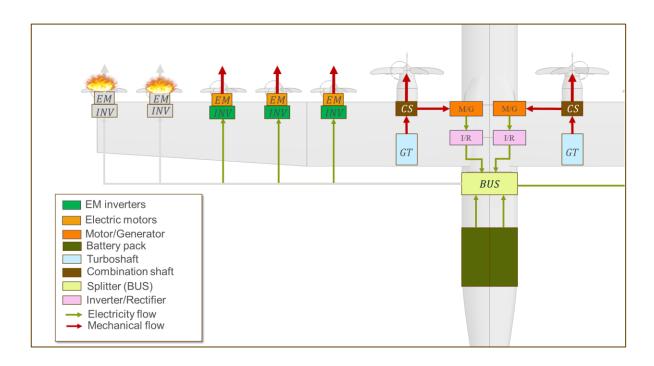

- "Deliver transformative technologies that will allow a step change in the reduction of local air quality (LAQ) impact below 900m above ground level around airports"
- "Deliver transformative technologies towards a silent aircraft operations around airports" (NOISE)

INDIGO

INtegration and Digital demonstration of low-emission aIrcraft technoloGies and airport Operations

- 10 partners (8 beneficiaries + 2 associated).
- Total funding 4.4m€ (EU funding 3,1 m€ + UKRI 1,3 m€)
- 7 WPs, 15 Deliverables; 36 months





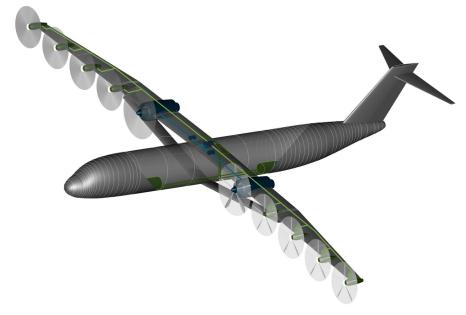
Contents

- Introduction
- Methodology
- Optimization campaign

Technological challenges

Large Aspect Ratio Wings (LARW)


- Strut-braced wing aircraft
- Offers possible better integration of DHEP


Hybrid Electric Propulsion

- Go as electric as possible below 900m
- Electric technologies still lagging for **full electric** trips (for MTOW of **A320** and design range **1000nm**)
- Many powertrain architectures (serial, parallel)

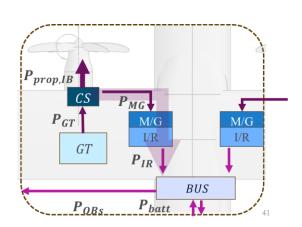
Distributed Electric Propulsion (DEP)

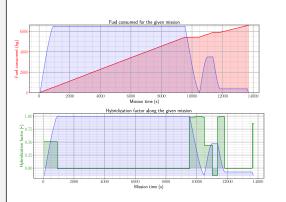
- Synergistic with noise reduction
- Blowing effects

Technological challenges

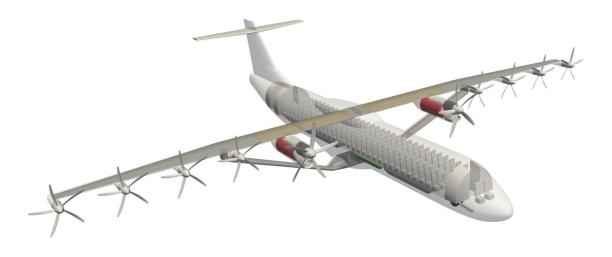
Deliverable 1.1

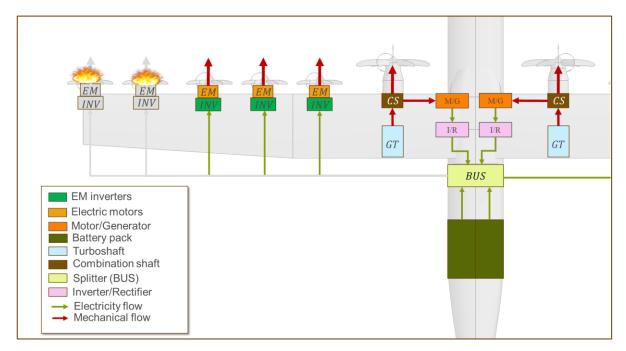
Provide an interim LARW-DHEP baseline


Deliverable 5.1 Preliminary design under Uncertainties



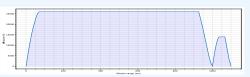
- How many propellers?
- Which powertrain architecture?
- Battery capacity?
- How to distribute the 2 sources of energy along the mission?
- Wing planform to integrate better the DHEP
- How to balance conflicting needs (LAQN vs block fuel)
- Technology uncertainties and robust design
- Minimize impact on surroundings on real trajectories




MDO

Contents

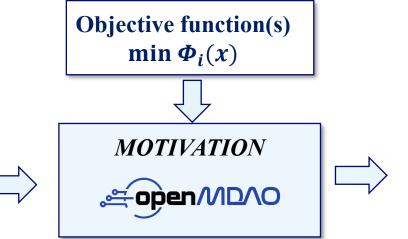
- Introduction
- Methodology
- Optimization campaign
- Results


Methodology - MDAO

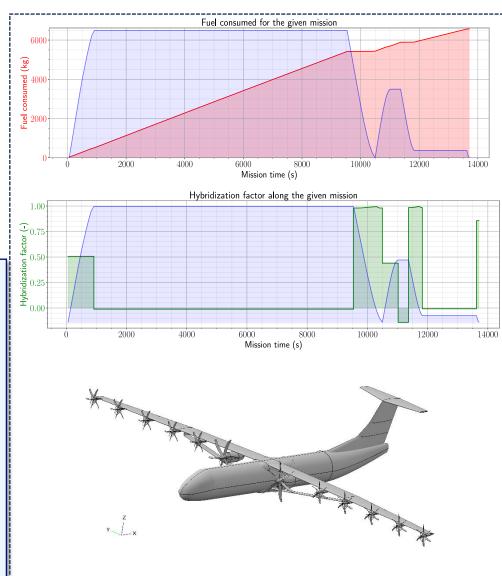
MDAO platform (MOTIVATION - Mdao fOr susTaInable aViATION)

TLDR

Mission and range



Design variables


- Component ratings
- Prop diameters and RPM
- Wing planform
- Hybridization factor/thrust splitting

Design constraints

- Sizing margins
- Throttles (Gas turbine and Electric motors)
- Battery residual SOC
- Propellers gaps
- TOFL and RLD
- OEI Certification gradients

- Forked from *OpenConcept* (2019)
- Flexibility:
 - different powertrains
 - discipline modules (fidelity)
- Powerful:
 - large optimization problems
 - avoiding a-priori decisions (extremely important as legacyexperience is missing).

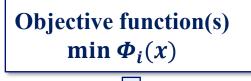
Methodology - MDAO

MDAO platform (TOPAZ - Tool for Optimizing Powerplants and Aircraft with Zero-emissions)

TLDR

Mission and range

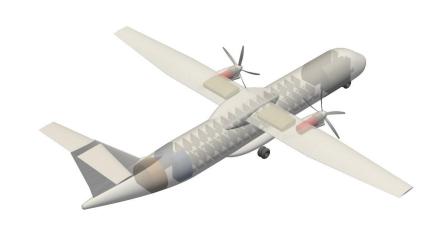
Design variables


As before +

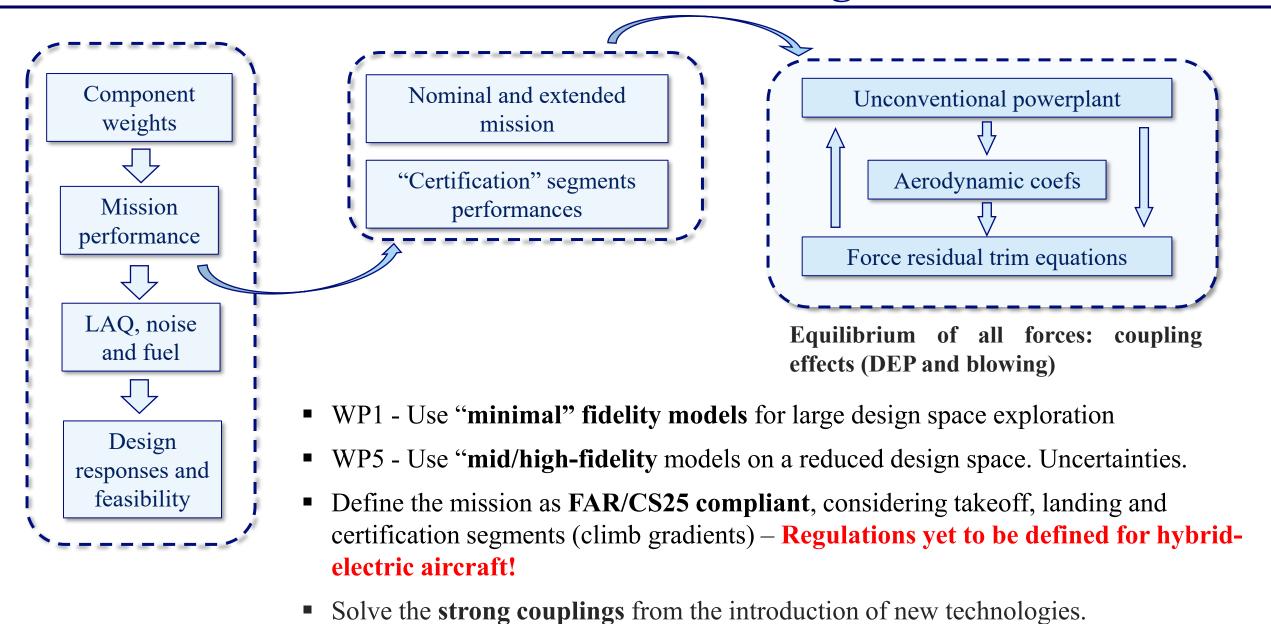
Htp/Vtp sizing, wing positioning

Design constraints

As before +

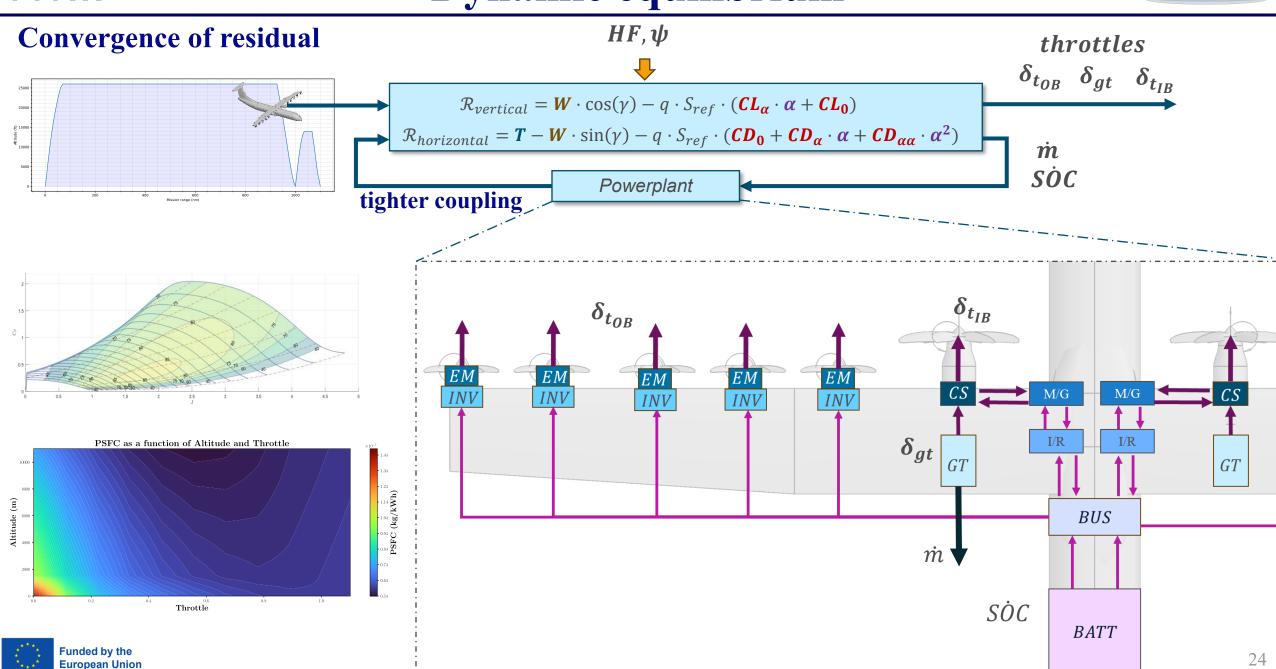

- Volume (integration of batteries)
- Trim (high-low speed)
- Stability
- Thermal management

- Flexibility:
 - different powertrains
 - discipline modules (fidelity)
- Powerful:
 - large optimization problems
 - avoiding a-priori decisions (extremely important as legacy-experience is missing).
- JAX-AD for sensitivities

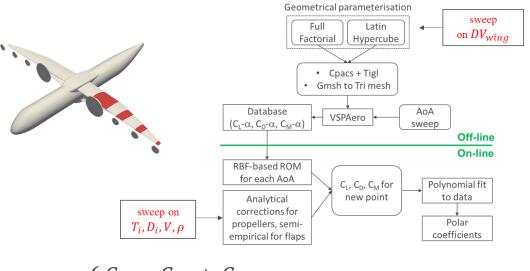


uc3m

MDAO frameworks building blocks



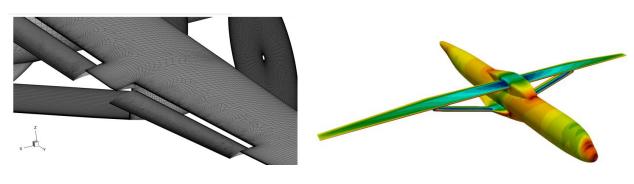
Dynamic equilibrium

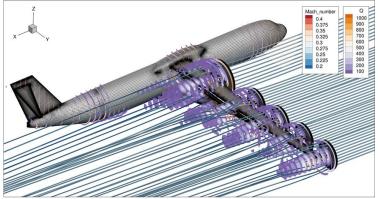


Disciplines - Aerodynamics (UST, DLR)

Low-fi

- ROM
 - VLM (VSPAero)
 - Analytical correction for propeller blowing
 - Semi-empirical equations for flap, etc...




$$\begin{cases} C_L = C_{L_0} + C_{L_{\alpha}} \alpha \\ C_D = C_{D_0} + C_{D_{\alpha}} \alpha + C_{D_{\alpha\alpha}} \alpha^2 \\ C_m = C_{m_0} + C_{m_{\alpha}} \alpha + C_{m_{\alpha\alpha}} \alpha^2 \end{cases}$$

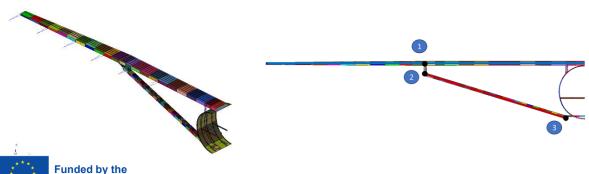
$$C_{L_{x_i}}C_{D_x} = f(DV_{wing}, T_i, D_i, V, \rho)$$

High-fi

- Multi-fi Surrogate Model (SM)
 - Hi-fi SU2+TAU
 - 6 SM for 6 polars (2 high-speed, 3 Low-speed)
 - Propeller blowing

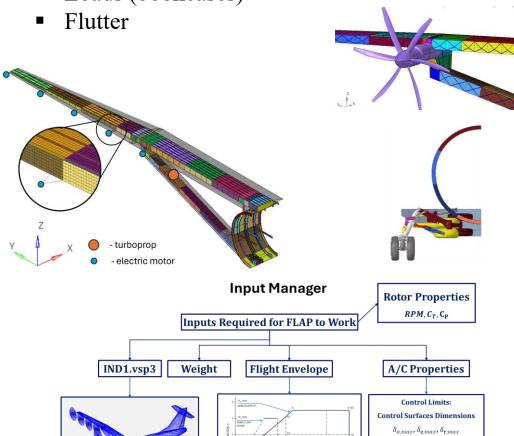
Flight Case Visualization (not trimmed), Starting Point for Trim Routine

Discipline - Structures (UC3M)


Low-fi

Weight breakdown

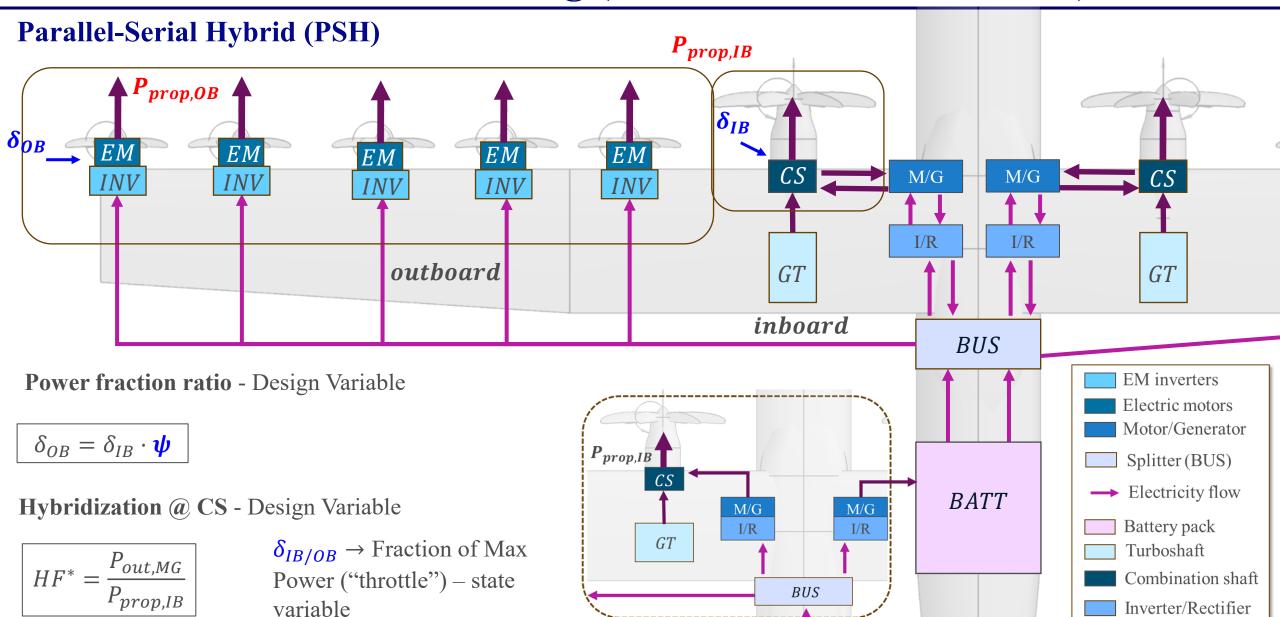
European Union


- Classic semi-empirical formula, FLOPS. However,
 - Structural weight: coefficients calibration based on gFEM structural sizing (optimization)
 - Weight of powerplant system as regression on Max Power – Weight curves [RUB, UST, TUBS]

$$\begin{split} W &= OEW + W_{PL} + W_{F} + W_{batt} \\ OEW &= W_{struct} + W_{sys} + W_{furnishing} + W_{operitems} + W_{ppsys} \end{split}$$

High-fi

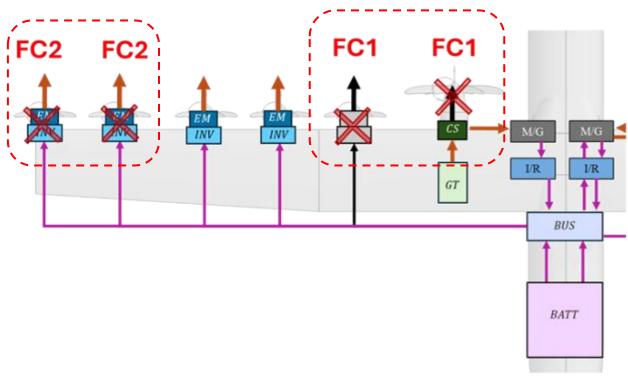
- SM for lifting system weight
- gFEM
 - Loads (bookcases)



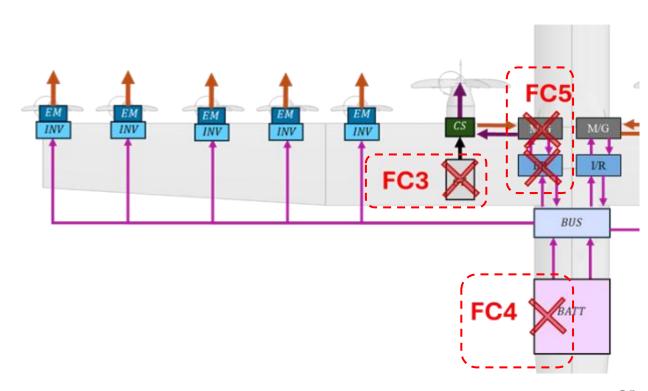
Funded by the European Union

Powertrain modelling (RUB, UST, TUBS, UC3M)

→ Mechanical flow



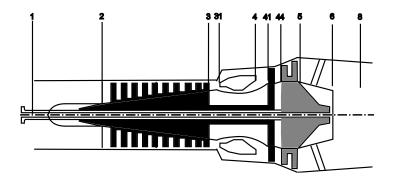
Failure cases

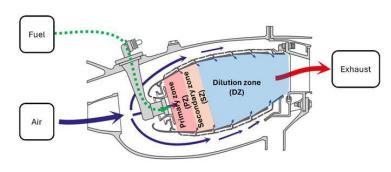

Lack of Thrust

- FC1 2 most-inboard propellers
- FC2 2 most-outboard propellers

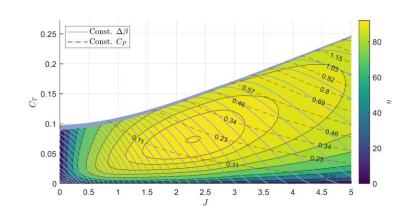
Lack of Power

- FC3 1 Gas Turbine Out
- FC4 50% Battery pack Out
- FC5 1 Electric Motor/Generator Out




Powertrain Modeling (RUB, TUBS, UST)

Gas Turbine (TUBS/RUB)

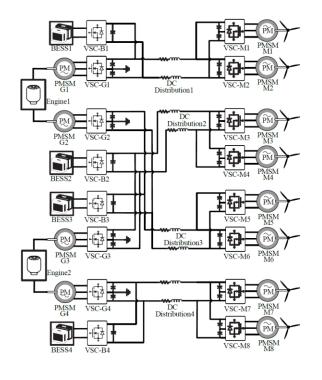

Combusiton Chamber (RUB)

For a certain power profile

- Sizes the thermal components
- Evaluate weight, PSFC
- NO_x , CO, HC, PM...

Propeller Aerodynamics (TUBS)

For a certain thrust profile

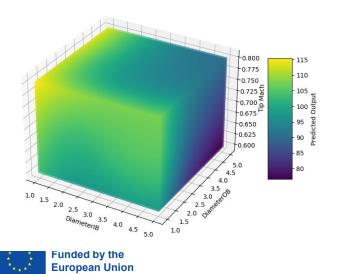

- Sizes the propellers
- Different Disk loadings

All given as SMs

Electric Power System (UST)

For a certain power profile

- Sizes electric system
- Outputs weight, efficiencies
- Includes transient-simulation and failure rates

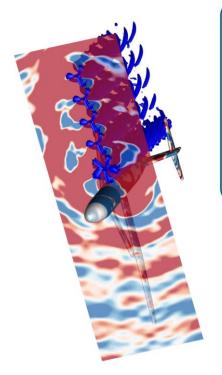


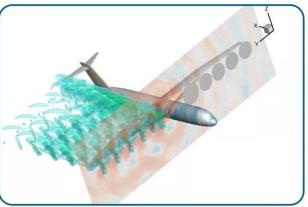
Noise (UBR, DLR)

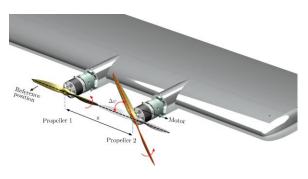
Low-fi

- **SM**
 - IMMIS+ provided by partner DLR for noise assessment
 - EPNL (effective perceived noise level) as function of the propeller diameters, tip
 Mach number and Thrust (different for the IB and OB propellers)

Experimental activity

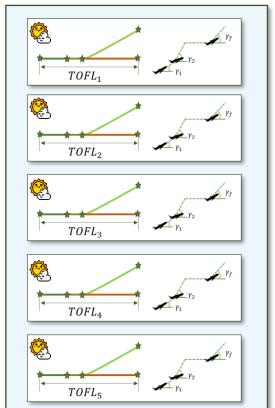

- Propeller-wing
- Propeller-propeller
- Phase shifting
- Used to calibrate the CAA solvers




High-fi

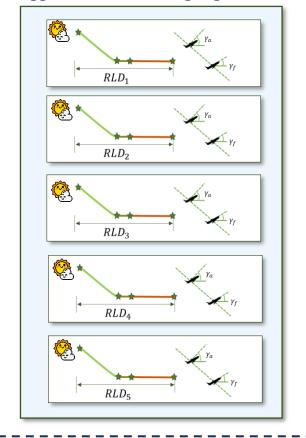
CAA

- Multifidelity
- CFD
- LBM
- Calibrated on wind tunnel
- Used on post MDO for fine-tuning
- Used for impact assessment



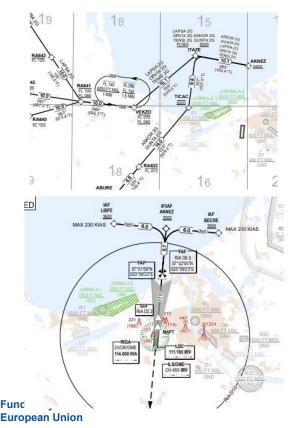
Mission module

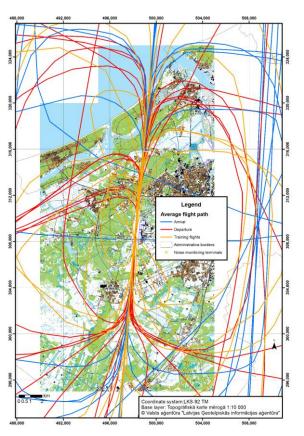
- Mission (Nominal + Diversion)
- TOFL and RLD Evaluation (wet/dry, failure conditions, inspired by FAR/CS25)
- Climb Gradients (failure conditions, inspired by FAR/CS25)


Takeoff and climb segments

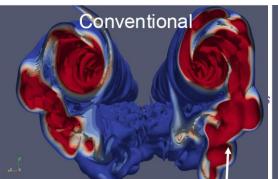
Main and extended certification mission

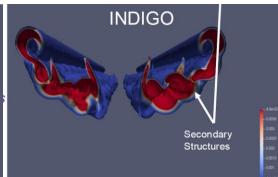
Approach and landing segments




Mission and Impact (CRIDA, RIX, BSC)

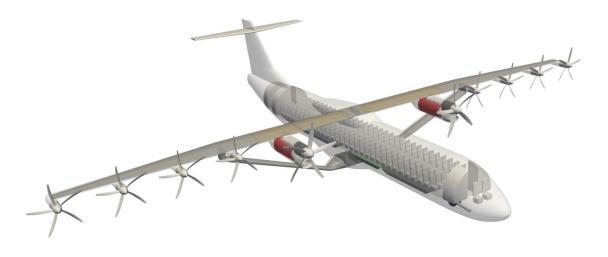
Airport trajectories

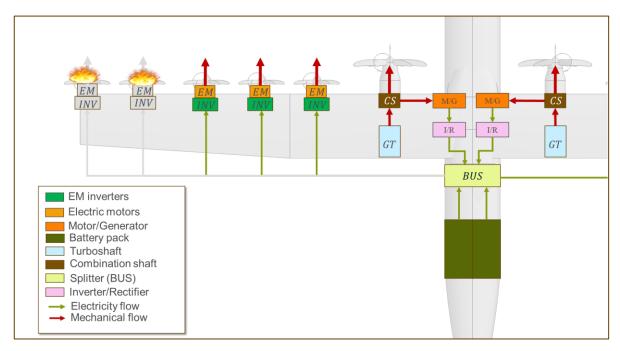

- RIGA, Madrid, Barcelona, Dortmund
- Trajectories
 - Most flown
 - Better/Worst
 - LAQ
 - Noise



Pollutant Dispersion

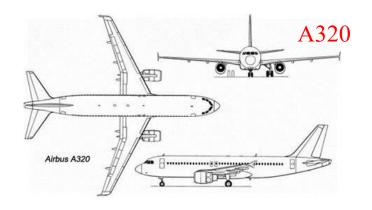
- LES modelling of vortices dynamics
- Assessment of pollutant concentration in populated areas
- Calibration of available methods on INDIGO's aircraft
- Used after MDO

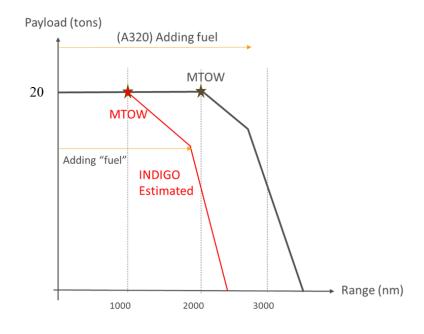




Contents

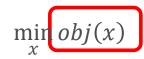
- Introduction
- Methodology
- Optimization campaign





Reference vs Indigo Aircraft

	INDIGO	A320		
MTOW	79 t	79 t		
MPW	20 t	20 t		
Wing Area	$122.6 m^2$	$122.6 m^2$		
Range @ Max Payload	1000 nm	~2000-2500 nm		
Cruise altitude	6000 m	~ 11000 m		
Mach @ cruise	0.6	0.78		



Optimization problem

subject $to g(x) \le 0$ h(x) = 0.

Optimization algorithm: SNOPT

$$obj = F^* + \alpha \cdot G^* + \beta \cdot N^*$$

 F^* : Non-dimensional block fuel along the **nominal mission**

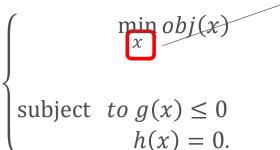
*G**: Non-dimensional fuel burn **below 900m**

*N**: Non-dimensional **noise measure**

Viability

(block fuel)

LAQN metrics (operations below 900)


- Gaseous part
 - Integration of fuel burn
 - NOx, CO2 and other derivatives can be evaluated as byproduct
- Noise Part
 - EPNL

 $\alpha \rightarrow$ relevance of **fuel burn below 900m** (indicators of Gaseous Emissions)

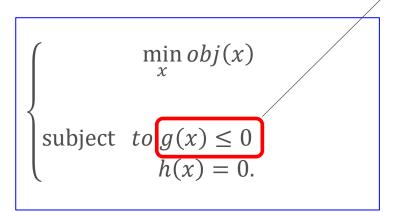
 β \rightarrow relevance of **noise** (indicators of emitted Noise)

Optimization problem

Airframe

- Wing planform DVs
- Other wing and strut outer-mold line DVs (but airfoils class is fixed)

Powertrain


- Max power of electric and thermal components
- Propeller design, **Diameter** and M_{tip} (RPMs as consequence) and solidity of the blade.
- Hybridization factors **HF** along mission segments
- Relative propeller power/thrust ψ along mission segments

Design variable	Units	Lower	Upper	Design variable	Units	Lower	Upper
Wing Planform							
AR	-	15	25	Taper ratio	-	0.31	0.33
Twist @ wing root	deg	-3	3	Twist @ wing tip	deg	-5	1
Twist @ strut	deg	-3	3	Strut chord	-	0.906	1.597
t/c @ root	-	12%	18%	t/c @ tip	-	9%	14%
Powerplant components							
Turboshaft	hp	3000	40000	Electric motor	hp	500	40000
Combination gearbox	hp	1000	100000	Inverter	hp	500	10000
Inverter/rectifier/generator assembly	hp	500	40000	Battery Weight	kg	10	100000
Propellers							
Propeller IB diameter	m	1.5	5	Propeller OB diameter	m	1.5	5
Propeller IB TipM	-	0.5	0.78	Propeller OB TipM	-	0.5	0.78
Propeller IB solid_factor	-	0	1	Propeller OB solid_factor	-	0	1
Ground and flight phases				_			
HF (initial)	-	-20	1	HF (final)	-	-20	1
psi (initial)	-	0.2	10	psi (final)	-	0.2	10

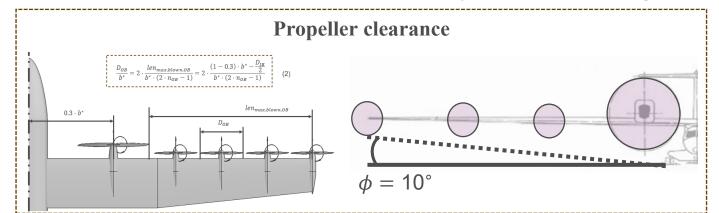
Total: **186** DVs

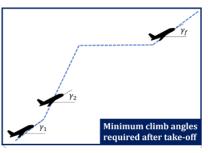
Optimization problem

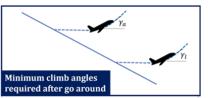
Total:

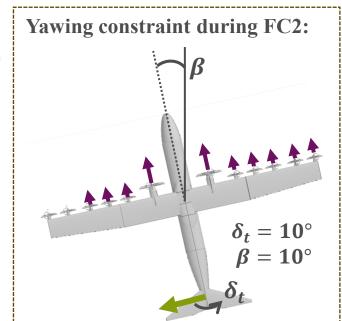
~5500 constraints

Performance and Airworthiness

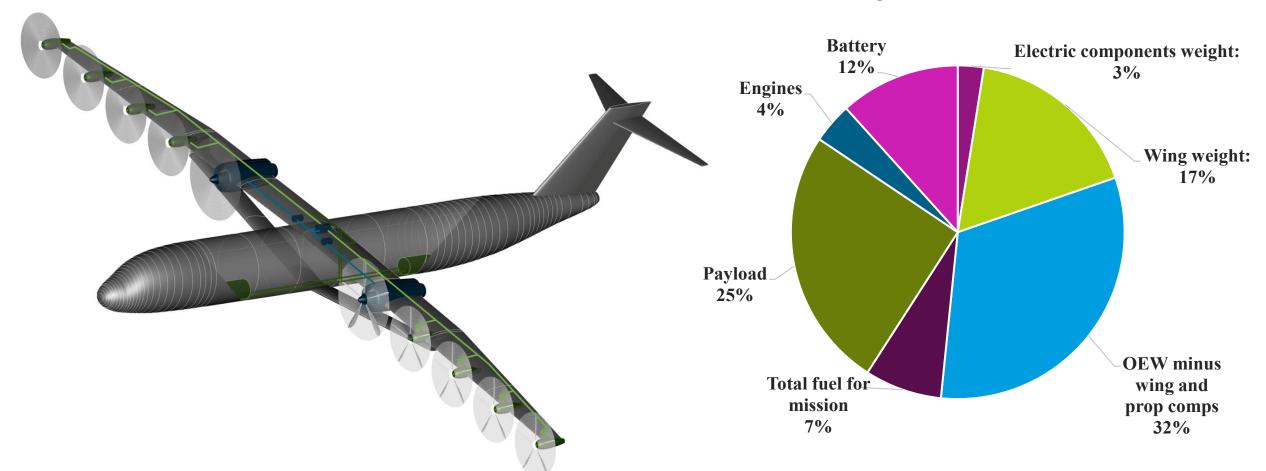

- TOFL< target TOFL (2190 m)
- LFL< target LFL
- Climb gradients
- Yawing constraints (failure case 2)
- $C_p \le 1.2$ (far from stall)


Geometric


- Gap between propellers (non-overlapping)
- Clearance during roll maneuver


MDA Feasibility

- Power < Power Rating (for all components)
- SoC of battery > 0.2 (can recharge!)



INDIGO aircraft baseline

Weight breakdown - 10SPH

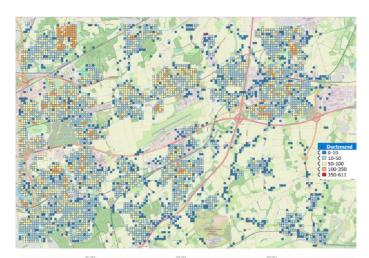
uc3m

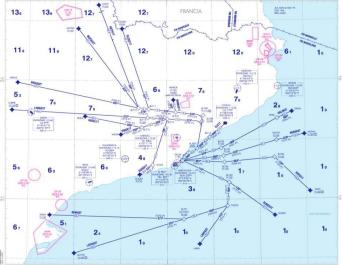
INDIGO Baseline design parameters

Variable	units	Value	Variable	units	Value
Propeller IB diameter	m	5	Comb gearbox weight	kg	103.4
Propeller OB diameter	m	4.0	Dimenional Aspect ratio	None	21.6
Propeller IB mach number	None	0.6	Dimensional Taper ratio	None	0.4
Propeller OB mach number	None	0.6	Dimensional Wing root twist	deg	-3.0
Propeller IB solid fraction	None	0.7	Dimensional Wing tip twist	deg	-5.0
Propeller OB solid fraction	None	0.3	Dimensional Strut twist	deg	1.6
Inverter rating	MW	1.7	Dimensional Strut chord	m	1.6
Inverter rectifier rating	MW	1.8	Dimensional Root thickness	None	0.2
Engine rating	MW	6.7	Dimensional Tip thickness	None	0.1
Electric motor rating	MW	1.6	Trip fuel	kg	4530.4
Gearbox rating	MW	2.0	Total fuel	kg	5912.4
Battery weight	kg	9215.8	OEW	kg	43871.7
Inverter weight	kg	94.1	Wing weight	kg	13577.7
Inverter rectifier motor weight	kg	196.0	Mean EPNL	None	74.9
Engine weight	kg	1547.6	Fuel burnt below 900m	kg	72.4
Motor weight	kg	79.2			

Comparison with A320

- Same Payload (specific pollution)
- Same Mission Range


100	Funded by the European Union


	INDIGO	A320	Improv %
Block fuel [kg]	4530.5	6479.7	30.1
Fuel burn < 900m [kg]	72.4	227.6	68.2
Noise (avg TO EPNL) [dB]	77.5	83.5	6.0 dB

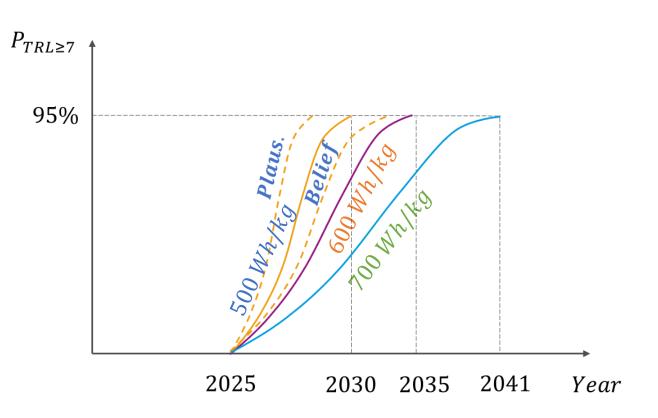
Next steps – HiFi MDOUU

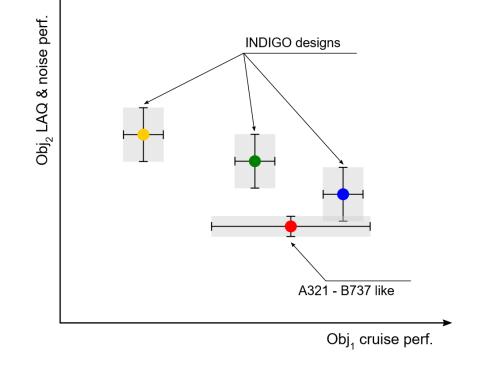
$$obj = F^* + \alpha \cdot G^* + \beta \cdot N^*$$

LAQN metrics (operations below 900)

- Gaseous and Noise concentrations measures (weighted by population density)
- Surrogate model
- Gaseous part
 - AeroMOD (emitted \rightarrow air dispersion \rightarrow concentration)
 - NOx, CO2 and other derivatives weighted by health impact
- Noise Part
 - EPNL in populated regions!

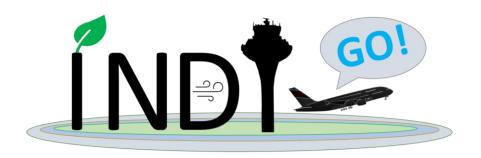
Multi-missions


- 20 TO trajectories
- 20 LA trajectories


Next steps – HiFi MDOUU

Uncertainties

On batteries technological level (energy/power density)



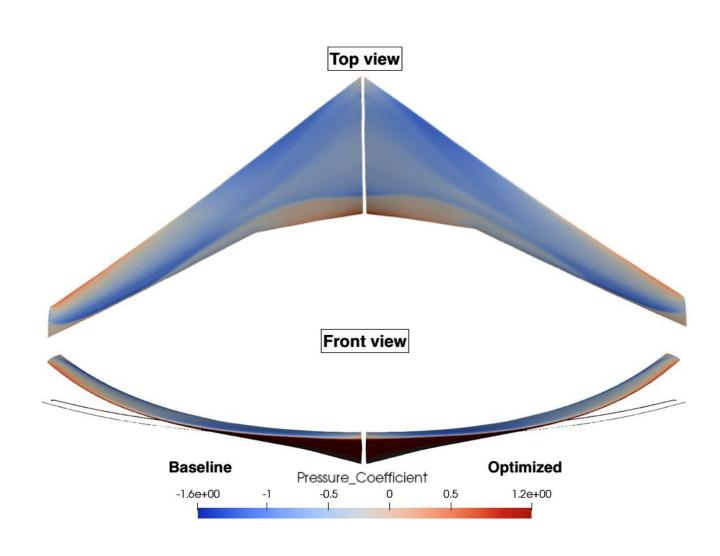
Dempster-Shafer evidence theory to determine optimistic (plausibility) and pessimistic margins of a given required battery feature.

Acknowledgements

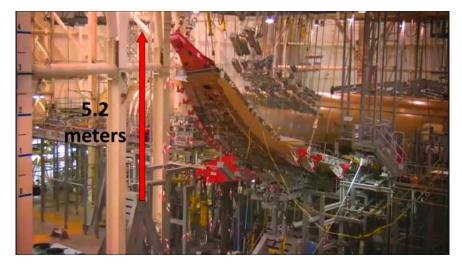
Website: https://indigo-sustainableaviation.eu/

LinkedIn: linkedin.com/company/ indigo-he-project/

The activities described in this paper have been carried out under the project **INDIGO** (Integration and Digital Demonstration of Low-emission Aircraft Technologies and Airport Operations), coordinated by **Universidad Carlos III de Madrid**.



INDIGO project has received fundg from the European Climate, Infrastructure and Environment Executive Agency (CINEA) under the Horizon Europe programme under grant agreement No 101096055. in



Highly Flexible Wings

Highly-flexible wing case

- New generation of aircraft → more efficient design:
 - Unconventional configurations with large AR, and/or
 - **Lighter** and more **flexible** aircraft structures.
- Expected **significant** wing **deflections** while in operation: strong **aeroelastic** (aero-structural) **coupling**.
- Required adequate analysis approaches.
- High-fidelity earlier to reduce time-to-market and/or risks.
- Not only analysis but design and (coupled) optimization

A350 ultimate load wing deflection

Cruise and and ultimate load wing deflections of the B787

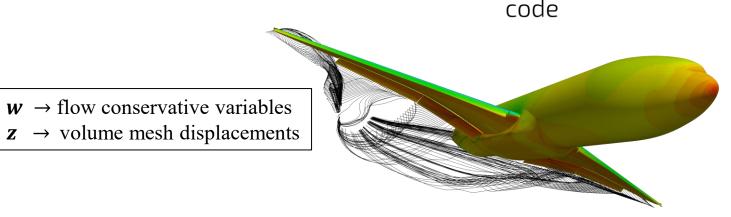
10% semi-span wing tip deflection in flight.

Aerostructural optimization

High-fidelity aerostructural optimization. How?

- Employ high-fidelity solvers into coupled aerostructural optimization processes:
 - Larger cost per evaluation of aeroelastic solutions.
 - High-sensitivity with respect to small geometric features \rightarrow higher number of Design Variables (**DVs**) needed to exploit potential of high-fidelity optimization.
- Influence on the optimization approach:
 - Gradient-based optimization is an appealing choice
 - Adjoint method makes gradient calculation almost independent on the number of DVs (as opposed to other strategies)
- Highly **modular**: each discipline solver is self-contained and communicates at high level by means of an orchestrator.

Solvers: Aerodynamics and mesh deformation


uc3m

CFD solver (SU2)

- Flow models: Euler, RANS, etc.
- (Arbitrary Lagrange Euler) ALE formulation.

$$\mathcal{F}(\mathbf{w}, \mathbf{z}) = \frac{\partial \mathbf{w}}{\partial t} + \nabla \cdot \mathbf{F}^{c}(\mathbf{w}, \mathbf{z}) - \nabla \cdot \mathbf{F}^{v}(\mathbf{w}, \mathbf{z})$$
$$-\mathbf{Q}(\mathbf{w}, \mathbf{z}) = \mathbf{0}$$

 $\mathbf{w} \rightarrow \text{flow conservative variables}$

SU2

Fluid mesh deformation solver (SU2)

Linear (pseudo-)elastic volume deformation method.

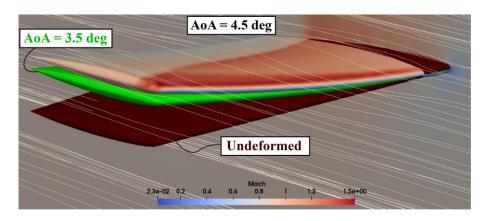
$$\mathcal{M}(\mathbf{z}, \mathbf{u_f}) = \mathbf{K_m} \cdot \mathbf{z} - \mathbf{\tilde{f}}(\mathbf{u_f}) = 0$$

 $u_f \rightarrow \text{displacements at the}$ surface

Implementation

- C++ core.
- Top level functions wrapped in Python.
- Handling **AD** by means of **CoDiPack** library.
- Hybrid MPI-MP parallelization

- ADL, Stanford University
- P&P, TU Delft
- SciComp, TU Kaiserslautern
- CREA Lab, Politecnico di Milano
- Imperial College London MTFC Group,
- University of Liege
- van der Weide Group, U. of Twente
- New Concepts in Aeronautics Lab, ITA
- Strathclyde University
- Robert Bosch LLC
- ECN part of TNO
- Universidad Carlos III de Madrid (UC3M)


In-house Structural FE solver (pyAUGUSTO)

- Shells (Plate & membranes), beams, nonlinear rigid elements
- Geometric nonlinearities (large displacements)

$$S(u_s) = f_s - f_{int}(u_s) = \mathbf{0}$$

 $u_s \rightarrow$ structural displacements variables

 $f_s \rightarrow \text{applied forces}$

ONERA M6 test case at aeroelastic equilibrium with different AoAs.

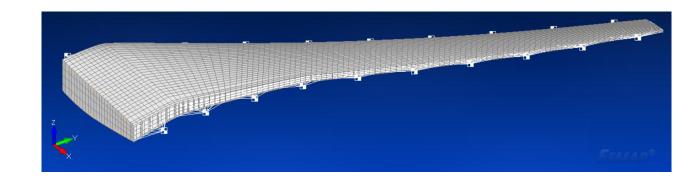
$\underline{Implementation}$

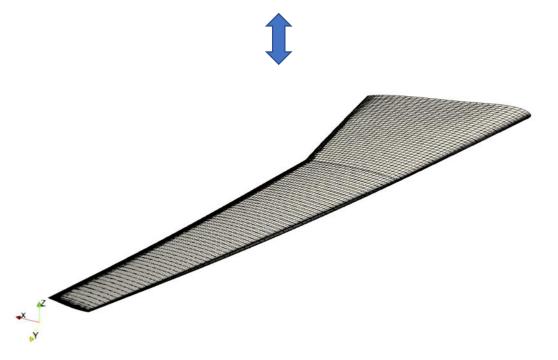
- C++ core.
- Top level functions wrapped in Python.
- Developed to handle AD by means of CoDiPack library.
- MPI parallelism

Very flexible NASA CRM deflection

Stiffened panel

Solvers: Spline


Interfacing method (MLS)

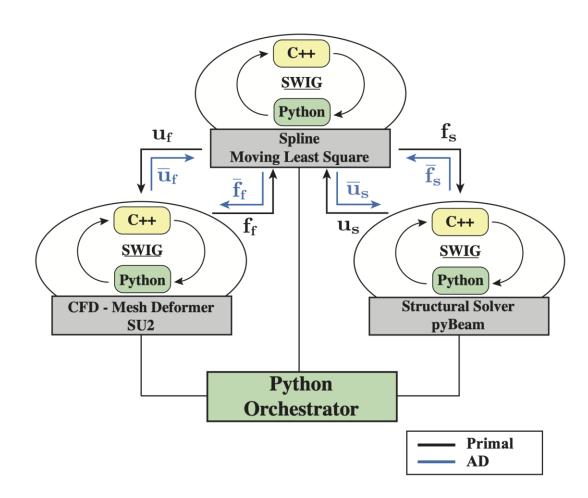

- Transfer information between non-conformal grids*.
- Based on Radial Basis Functions.

$$\begin{cases} u_f = H_{MLS} u_s \\ f_s = H_{MLS}^T f_f \end{cases}$$

Implementation

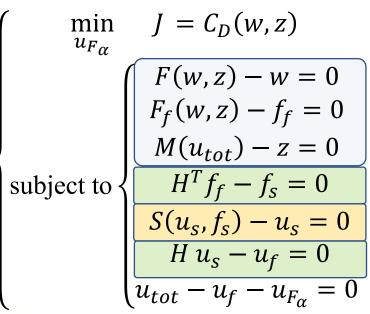
- **C**++ core.
- Top level functions wrapped in **Python**.
- Ad-hoc developed.

^{*}Quaranta G, et al (2005) A conservative mesh-free approach for fluid structure problems in coupled problems. In: International conference for coupled problems in science and engineering, Santorini, Greece. pp 24–27


Coupling method (Orchestrator)

- **3-field** formulation.
- **Block Gauss-Seidel** (BGS) iterative solution strategy.
- **Relaxation** of displacements to ensure convergence.
- Primal and dual.

$$\mathcal{G}(\mathbf{u_s}, \mathbf{w}, \mathbf{z}) = \begin{cases} \mathcal{S}(\mathbf{u_s}, \mathbf{w}, \mathbf{z}) = 0, \\ \mathcal{F}(\mathbf{w}, \mathbf{z}) = 0, \\ \mathcal{M}(\mathbf{u_s}, \mathbf{z}) = 0, \end{cases}$$


Implementation

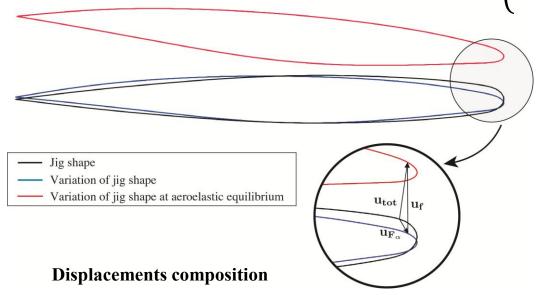
- Python coded.
- Wraps solvers (primal/dual problems).
- Interfaces with optimizer.
- Ad-hoc developed.

Application: wing-shape aerostructural optimization (2021)

- Response (objective/constraints)
 - Fluid: drag coefficient
- DVs:
 - Geometric (variation of wing jig shape)

Fluid solver

Force calculation (on the wing surface)


Mesh deform. solver

Force transfer

Struct. solver

Struct. disp. transfer

Displacement composition

	State variables
u_s	Structural displacements
\mathbf{w}	Flow conservative variables
${f z}$	Volume mesh displacements
$\mathbf{f_f}$	Fluid loads
$\mathbf{f_s}$	Structural loads
$\mathbf{u_f}$	Displacements of wing surface due to deflection
$\mathbf{u_{tot}}$	Cumulative displacements of wing surface

Adjoint equations and objective gradient

$\overline{w}^T = \frac{\partial J}{\partial w} + \overline{w}^T \frac{\partial F}{\partial w} + \overline{f_f}^T \frac{\partial F_f}{\partial w}$

$$\frac{\partial J}{\partial f_f} - \overline{f_f}^T + \overline{f_s}^T H^T = 0$$

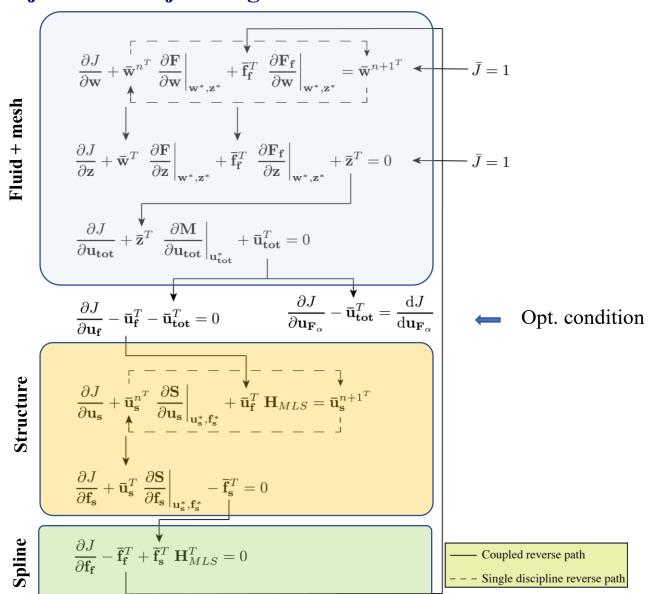
$$\frac{\partial J}{\partial z} + \bar{w}^T \frac{\partial F}{\partial z} + \bar{f}_f^T \frac{\partial F_f}{\partial z} + \bar{z}^T = 0$$

$$\frac{\partial J}{\partial f_s} - \overline{f_s}^T + \overline{u_s}^T \frac{\partial S}{\partial f_s} = 0$$

$$\bar{u}_s^T = \frac{\partial J}{\partial u_s} + \bar{u}_s^T \frac{\partial S}{\partial u_s} + \bar{u}_f^T H$$

$$\frac{\partial J}{\partial u_f} - \bar{u}_f^T - \bar{u}_{tot}^T = 0$$

$$\frac{\partial J}{\partial u_{tot}} + \bar{z}^T \frac{\partial M}{\partial u_{tot}} + \bar{u}_{tot}^T = 0$$


$$\frac{dJ}{du_{F_{\alpha}}} = \frac{\partial \mathcal{L}}{\partial u_{F_{\alpha}}} = \frac{\partial J}{\partial u_{F_{\alpha}}} - \overline{u}_{tot}^{T}$$

How to solve this system of equations?

- Main blocks are
 - CFD and mesh solvers, coupled within **SU2**
 - CSD solver
 - Interface module
- A monolithic solution is not efficient (different physics are better treated by dedicated solvers), not convenient/viable (memory to store the computational graph)
- Ideally, different solvers treat a block of these equations.
- Coupling due to dependency of adjoint equation of one solver to adjoint variables calculated in other solvers

Aerostructural optimization problem

Adjoint and objective gradient

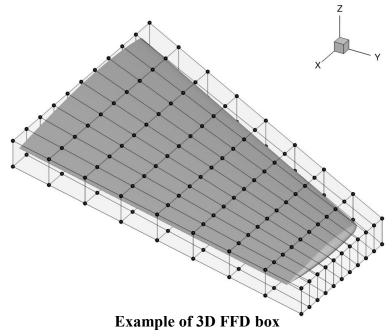
Iterative solution:

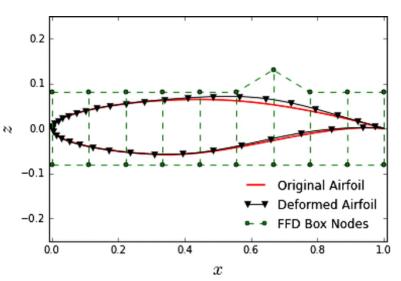
- At the **discipline solver level** (nonlinear primal solver in FP).
- At the **interdiscipline level** (source term exchanged through orchestrator).

	State variables
$ m u_s$	Structural displacements
\mathbf{w}	Flow conservative variables
${f z}$	Volume mesh displacements
$\mathbf{f_f}$	Fluid loads
$f f_s$	Structural loads
$\mathbf{u_f}$	Displacements of wing surface due to deflection
$ m u_{tot}$	Cumulative displacements of wing surface

With minimum effort on the workflow it is possible to:

- Select different responses (objective function/constraint)
- Add different **DVs**.


Aerostructural optimization problem


Aerostructural wing shape optimization

- Algorithm: Sequential Least Square Quadratic Programming (SLSQP).
- Free Form Deformation (FFD) technique.
- **FFD box** discretized with given number of **Control Points** (CP), which are the DVs given to optimizer.

Constraints

- Geometric constraints (e.g., t/c) and their gradients evaluated by SU2 module **SU2_GEO**.
- Prescribed C_L accommodated internally by SU2 (not treated at optimization level).

2D FFD technique on airfoil*

Application: NASA CRM

Importance of considering aerostructural coupling

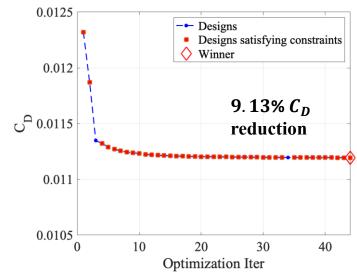
Two optimization strategies:

- Aerodynamic Wing Shape Optimization (AWSO).
 - > Rigid configuration.
 - > No aerostructural coupling in primal/dual problems.
- Aerostructural Wing Shape Optimization (ASWSO).
 - > Configuration at aeroelastic equilibrium: flying shape.
 - > Aerostructural coupling in primal/dual problem.
 - > Intermediate approach: aerostructural coupling in the primal problem only

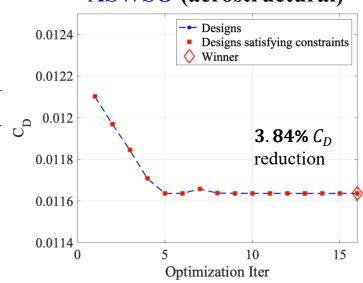
Asymptotic flow conditions

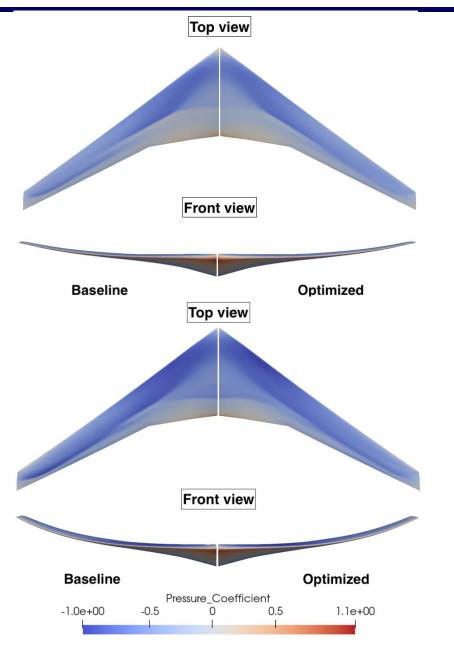
• $C_L = 0.5$; $M_{\infty} = 0.85$.

AWSO optimum is, compared, at aeroelastic equilibrium, to the ASWSO optimum.


Application: NASA CRM

Optimization of the CRM


Aerodynamic constraints C_L 0.5Geometric constraints 15.6%t/c (sec. at 0.34% span) t/c (sec. at 16.32% span) 12.5%t/c (sec. at 27.01% span) 11.2%t/c (sec. at 38.49% span) 10.4%t/c (sec. at 49.76% span) 10.0%t/c (sec. at 60.74% span) 9.8%t/c (sec. at 71.89% span) 9.6%t/c (sec. at 83.07% span) 9.5%t/c (sec. at 94.14% span) 9.5%Number of DVs 418

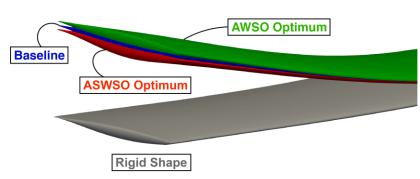

Optimization results

AWSO (Rigid wing)

ASWSO (aerostructural)

AWSO and **ASWSO** comparison

Configuration	$\mathbf{C}_{\mathbf{D}}$	Diff. %
ASWSO optimum AWSO optimum Original	0.01163 0.01243 0.01210	$6.87\% \\ 4.04\%$


C_D comparison at aeroelastic equilibrium

AWSO optimum performs worse than the ASWSO.

• Optimized for an **off-design** point.

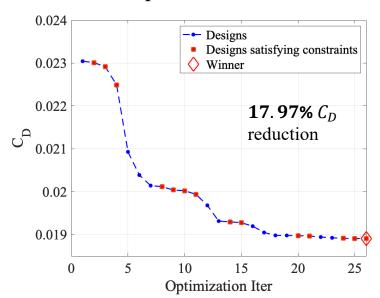
AWSO optimum performs worse than the baseline.

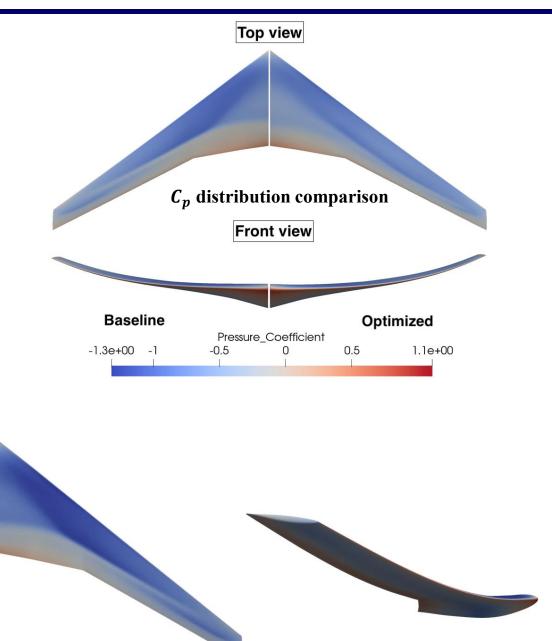
For highly flexible wings AWSO doesn't necessarily payback.

Flying shapes comparison

AWSO and ASWSO flying shapes C_p distribution comparison

Application: NASA CRM with RANS

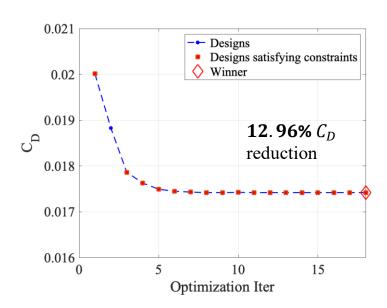

uc3m


Optimization of the CRM (RANS-SA)

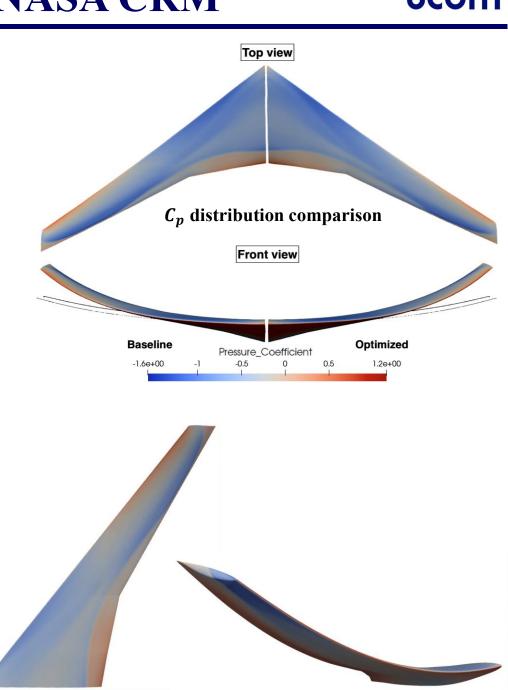
ASWSO (aerostructural)

- Ideal gas model.
- Laminar viscosity with Sutherland's law.
- Turbulent viscosity with SA one equation.
- Full-turbulence (non-frozen turbulence) adjoint.
- Same aerodynamic and geometric constraints.

Optimization results


Application: Very flexible NASA CRM

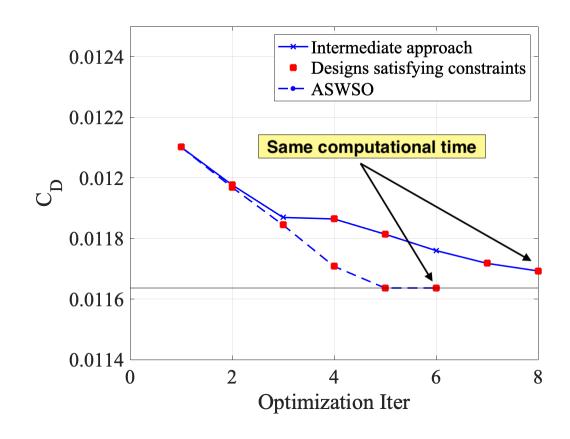
Optimization of the very-flexible CRM (Euler)


ASWSO (aerostructural)

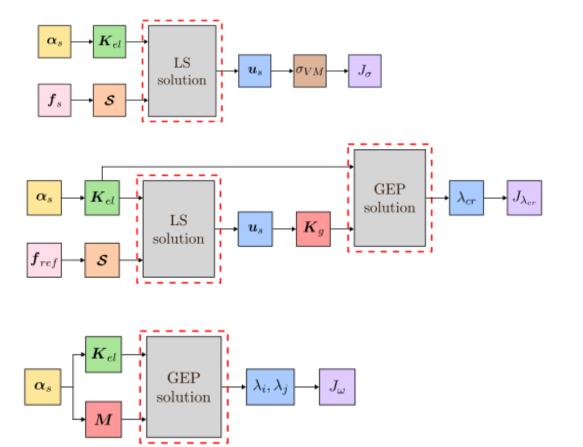
Aerodynamic constraints		
C_L	=	0.5
Geometric constraints		
t/c (sec. at 0.34% span)	\geq	15.6%
t/c (sec. at $16.32%$ span)	\geq	12.5%
t/c (sec. at 27.01% span)	\geq	11.2%
t/c (sec. at $38.49%$ span)	\geq	10.4%
t/c (sec. at $49.76%$ span)	\geq	10.0%
t/c (sec. at $60.74%$ span)	\geq	9.8%
t/c (sec. at $71.89%$ span)	\geq	9.6%
t/c (sec. at 83.07% span)	\geq	9.5%
t/c (sec. at 94.14% span)	\geq	9.5%
Number of DVs	=	418

Optimization results

Wing stiffness tuned to have $\sim 14\%$ of semispan wing tip deflection at aeroel. equilibrium.



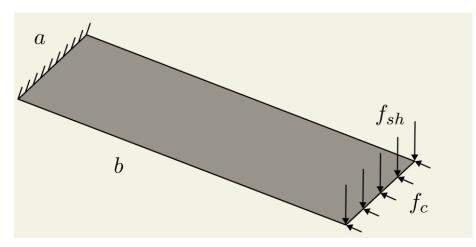
Coupled or Uncoupled Gradients?

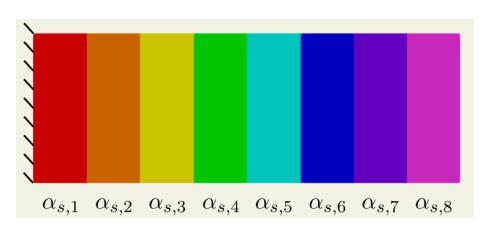

Coupled gradients vs uncoupled gradients

ASWSO (aerostructural)

- Fully-coupled approach (coupled primal and adjoint problem)
 - Discrete-exact gradients
 - More complex; gradient evaluation more costly
- Intermediate approach: gradients without aerostructural coupling
 - Inexact gradients
 - Simpler; cheaper gradient evaluation
- For a given **computational budget**, **fully-coupled** approach is providing a better result
- For more flexible wing, the approximated gradient can be too imprecise, and determine failure of the optimization problem.

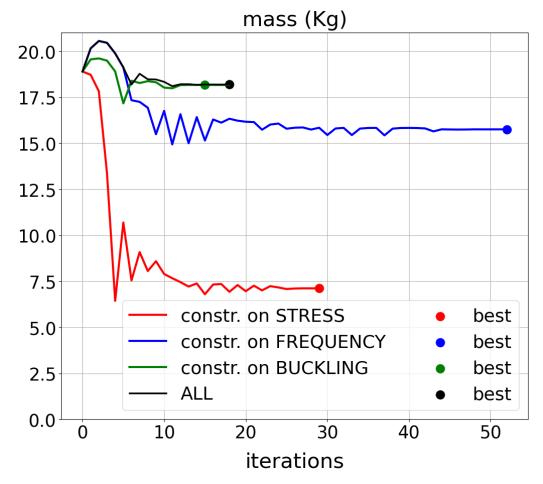
- Improvement of FE solver.
- AD-based adjoints
 - Stresses
 - Buckling
 - Free Vibration modes (step towards flutter)



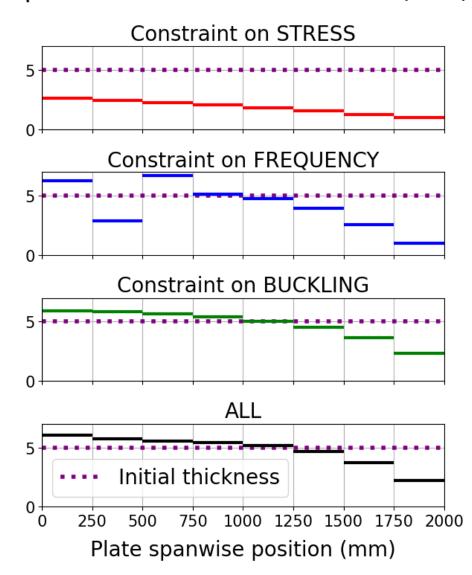

Governing equations	$c_i \leq 0$
$S = K_{el}u_s - f_s = 0$	$J_{\sigma} = KS(g_i) = \frac{1}{\rho_{KS}} \log \sum_{i=1}^{n} e^{\rho_{KS} \cdot g_i} \le 0$ $(where \ g_i = \frac{\sigma_i^{VM}}{\sigma_{ADM}} - 1)$
$(\mathbf{K}_{el} - \omega_k^2 \mathbf{M}) \boldsymbol{\phi}_k = 0$	$J_{\omega} = \rho_{\omega} \frac{\left(\omega_{j} - \omega_{i}\right)_{init}}{\omega_{j} - \omega_{i}} - 1 \le 0$
$(\mathbf{K}_{el} + \lambda_k^{cr} \mathbf{K}_g) \boldsymbol{\phi}_k^{cr} = 0$	$J_{\lambda_{cr}} = \rho_{\lambda_{cr}} \frac{(\lambda_1^{cr})_{init}}{\lambda_1^{cr}} - 1 \le 0$

	Primal problem	Adjoint statement
Linear system	$K_{el}u_s = f_s$	$K_{el}^{T} s = \frac{\partial J}{\partial u_{s}}$ $\bar{K}_{el} += -s \cdot u_{s}$ $\bar{S} += s$
Generalised eigenvalue problem	$\mathbf{A}\boldsymbol{\phi}_{k} = \lambda_{k} \boldsymbol{B} \boldsymbol{\phi}_{k}$	$\overline{A} += \phi_k \phi_k^T \overline{B} += -\lambda_k \overline{A}$

Structural optimisation – testcase 1

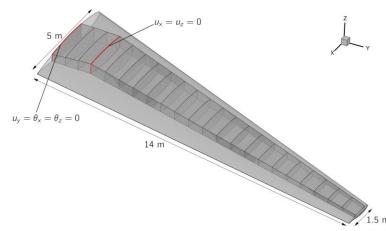


- **8 DVs:** $\alpha_{s,0} = 5.0 \text{ mm}$; $1.0 \text{ mm} \le \alpha_{s,i} \le 10.0 \text{ mm}$
- 4 optimisation runs for 4 constraint sets:
 - **1. Stress:** σ_{VM} aggregated on all elements; $\sigma_{ADM} = 270~MPa$
 - 2. Frequency: $(\omega_2 \omega_1) \ge 1.2 * (\omega_2 \omega_1)_{init}$
 - 3. Buckling: $\lambda_1^{cr} \geq 1.2 * (\lambda_1^{cr})_{init}$
 - **4. All:** stress + frequency + buckling together


uc3m

Structural optimisation - testcase 1 - results

Constraint	Stress	Frequency	Buckling	all
M (Kg)	7.12	15.76	18.17	18.19
Δm (%)	-62.33	-16.61	-3.86	-3.76


Optimal thickness distribution (mm)

Structural optimisation - testcase 2

High-Fidelity Aeroelastic Optimisation Benchmark

Gray A. C., Martins J.R.. A proposed Benchmark Model for Practical Aeroelastic Optimization of Aircraft Wings, AIAA SciTech 2024 Forum, https://doi.org/10.2514/6.2024-2775.

- rib nodes loaded along the z direction; root & fus. intersection constr.
- **111 DVs** : $\alpha_{s,ini} = 7.0 \text{ mm}$; $1.0 \text{ mm} \le \alpha_{s,i} \le 20.0 \text{ mm}$
- **3 optimisation runs for 3 constraint sets:**

1. Stress constraint set: 5 aggregation areas

RIBS

FRONT SPAR

REAR SPAR

 σ_{ADM} = 320 Mpa

Imposed simultaneously (5 constraints)

Imposed simultaneously

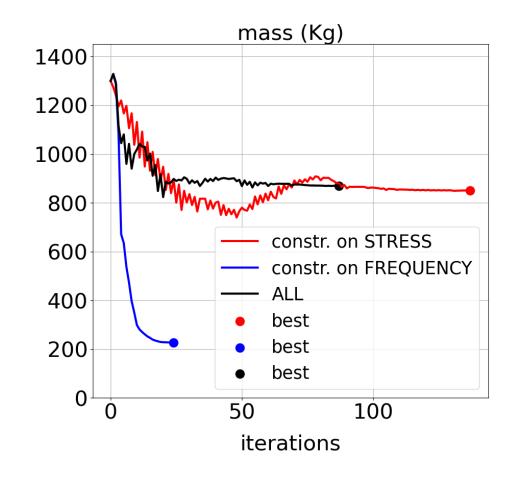
(3 constraints)

TOP SKIN

BOTTOM SKIN

2. Frequency constraint

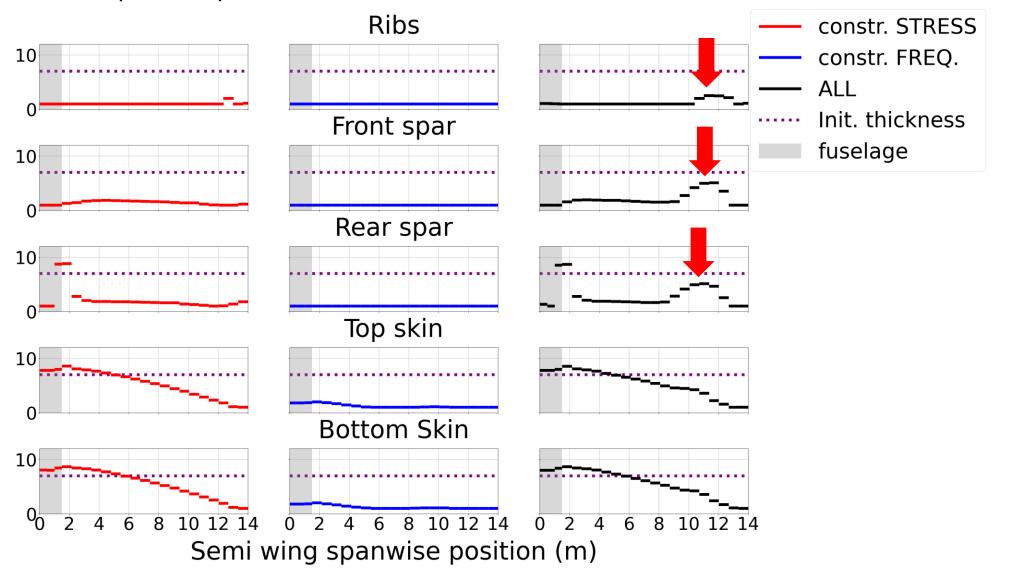
$$(\omega_{2} - \omega_{1}) \ge \rho_{\omega}(\omega_{2} - \omega_{1})_{ini} \qquad \rho_{\omega} = 1$$


$$(\omega_{3} - \omega_{2}) \ge \rho_{\omega}(\omega_{3} - \omega_{2})_{ini} \qquad \rho_{\omega} = 1$$

$$\omega_{1} \ge \rho_{\omega}(\omega_{1})_{ini} \qquad \rho_{\omega} = 1.15$$

3. Mixed ("All") constraint set: stress + frequency constraint sets together (8 in total)

Structural optimisation - testcase 2 - results


Constraint	Stress	Frequency	all
M (Kg)	850.17	227.58	869.91
Δm (%)	-34.58	-82.49	-33.06

Active constraints				
	Constr. on STRESS	Constr. on FREQUENCY	ALL	
J_{σ}^{RIBS}				
J_{σ}^{FSPAR}				
J_{σ}^{RSPAR}				
J_{σ}^{TSKIN}				
J_{σ}^{BSKIN}				
$J_{\omega}^{(\omega_1)}$				
$J_{\omega}^{(\omega_1)}$ $J_{\omega}^{(\omega_2-\omega_1)}$				
$J_{\omega}^{(\omega_3-\omega_2)}$				

Structural optimisation - testcase 2 - results

Optimal spanwise thickness distribution (mm)

17 July 2025 University of Kaiserslautern-Landau

Multidisciplinary Design Optimization for Next-Generation Sustainable Aircraft

Rauno Cavallaro, PhD

Associate Professor,
Department of Aerospace Engineering,
Universidad Carlos III de Madrid

