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Overview: Robust Multi-Objective Optimization

Competing
Objectives

The general research idea is to find an effi-
cient and successful method for robust multi-
objective optimization involving different to-
pics, that have to be combined.

Optimization Uncertainties
(PDE constrained) in the Model

Robust Designs

Multi-Objective Optimization (MOO)

The aim of multi-objective optimization algorithms is to find a representative subset of
Pareto optimal solutions. Multi-objective robust design is mainly treated in an evolutionary
context [1]. We make use of the equality-constraint method and the s-constraint
method [2] enabling the use of deterministic methods for single-objective optimization.

The concept is to optimize one objective function |
while imposing equality or inequality constraints on
the remaining objective functions. The constraints
as well as the objective function to be optimized.
The resulting problem for k objective functions is

min fs(y,u)
Y. u

st. cly,u) =0, fily,u) < f’ (1)
Vie{l,..,k} i#s.

All unique solutions to (1) are globally Pareto op-
timal for any upper bound.
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Scanning procedure with equality-constraint method
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o The Pareto-optimal front for

the application is shown on the
left.  The underlying multi-
objective optimization problem
reads

min (cay, u), —ci(y, u))

s.t. c(y,u) =0,
Cm(y,uw) = 0.0,
d(y,uw) = 0.12.
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Challenge for specific applications: To enhance the chance of finding
a global optimum the resulting single-objective optimization problems can be
solved using a hybrid approach (e.g by combining a genetic algorithm with
a gradient-based method).

Test function

(hybrid: GA, Ipopt)

PDE Constrained Optimization

We make use of the one-shot method with additional equality constraints [3] using algo-
rithmic differentiation. Instead of doing a nested optimization, the idea is to simultaneously
obtain primal and adjoint feasibility, as well as optimality. Assuming that the state
equation can be transformed into a contractive fixed point form G(y,u) = y, we iterate

Yr+1 = G(yr, up) )
U1 — UL — Blleu(yk, Uk, )\k)T (design iteration)
Aj1 = Ny(ykiuka i)'

pi1 = i — B Th(yy, uk)

where N(y,u, X) = f(y,u) + G(y,u) A + h(y,u) .

(primal iteration)

(2)

(adjoint iteration)
(augmented iteration),
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—— primal residual
- - = adjoint residual ||
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Optimization history: One-shot with equality constraints using algorithmic differentiation (AD) and a constant preconditioner B

Challenges: Inequality constraints and the choice of the constraint multiplier preconditioner.

Aerodynamic Shape Optimization in SU2

The concepts are applied to aerodynamic shape optimization using the open-source multi-
physics package SU2 and

e drag coefficient c; and lift coefficient ¢; as competing
objectives,

Hicks-Henne

e 38 Hicks-Henne design variables coefficient h

e constraints on moment ¢,, and thickness d,

e a steady, transonic Euler flow and the
e AD-based discrete adjoint solver in SU2 [4].

Challenge: Application to multi-disciplinary optimization in the context of fluid-structure
interaction (shape optimization, if possible topology optimization).

Robustness in MO Context

We consider a solution robust if it is not very sensitive to aleatory uncertainties w. In
multi-objective design different concepts for finding robust solutions can be considered:

e expectation-based approach: e expectation-variance-based approach:
min Exp(F(y, u, x(w))) (1) min (Exp(F'), Var(F)) (1)

J Y

min F(y, u, ¥) (11 min F(y, u, ¥) (1V)
B < n,

Yy.u
s.t.||[Exp(F) — F|| < v,
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The difference to single-objective robust optimization
is that we have

e a combined effect of uncertainties in objective space,
and

e we have to consider a set of robust solutions.

drag coefficient

For aerodynamic shape optimization we consider ro-
bustness of type (I). The figure shows the effect of an

0.4 s uncertain Mach number Ma ~ N(0.8,0.01) in objec-
tive space.

lift coefficient

Challenge: Is it sufficient to look at statistical quantities? What about gains and losses?

Uncertainty Quantification

We make use of a non-intrusive polynomial chaos approach, in which the stochastic
objective function is expanded in terms of polynomials ®; that are orthogonal with respect

to the density function of the input random variables x(w):
M

0
flywz(w) =) fily,w)dx), fily,u)=vE(f(y,w,2)0)~ Y wf(y,u,z).
=1 k=1
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x exp(opt) x exp(opt)
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Robust Pareto points for uncertain Mach number (left) and geometry (right and designs)

The uncertain geometry (perturbed in normal direction by random process with expected function and co-
variance function) is modelled with the help of a truncated Karhunen-Loeve expansion and the computational
effort is reduced by using sparse grids for the Gauss-Hermite quadrature points (see [5]).
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