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Overview: Robust Multi-Objective Optimization

The general research idea is to find an effi-
cient and successful method for robust multi-
objective optimization involving different to-
pics, that have to be combined.

Multi-Objective Optimization (MOO)

The aim of multi-objective optimization algorithms is to find a representative subset of
Pareto optimal solutions. Multi-objective robust design is mainly treated in an evolutionary
context [1]. We make use of the equality-constraint method and the ε-constraint
method [2] enabling the use of deterministic methods for single-objective optimization.

The concept is to optimize one objective function
while imposing equality or inequality constraints on
the remaining objective functions. The constraints
as well as the objective function to be optimized.
The resulting problem for k objective functions is

min
y,u

fs(y,u)

s.t. c(y,u) = 0, fi(y,u) ≤ f
(j)
i (1)

∀ i ∈ {1, ..., k} i 6= s.

All unique solutions to (1) are globally Pareto op-
timal for any upper bound. Scanning procedure with equality-constraint method
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The Pareto-optimal front for
the application is shown on the
left. The underlying multi-
objective optimization problem
reads

min
y,u

(cd(y,u),−cl(y,u))

s.t. c(y,u) = 0,
cm(y,u) = 0.0,
d(y,u) = 0.12.

Test function
(hybrid: GA, Ipopt)

Challenge for specific applications: To enhance the chance of finding
a global optimum the resulting single-objective optimization problems can be
solved using a hybrid approach (e.g by combining a genetic algorithm with
a gradient-based method).

PDE Constrained Optimization

We make use of the one-shot method with additional equality constraints [3] using algo-
rithmic differentiation. Instead of doing a nested optimization, the idea is to simultaneously
obtain primal and adjoint feasibility, as well as optimality. Assuming that the state
equation can be transformed into a contractive fixed point form G(y, u) = y, we iterate

yk+1 = G(yk,uk) (primal iteration)

uk+1 = uk −B−1
k Nu(yk,uk, λ̂k)> (design iteration)

λk+1 = Ny(yk,uk, λ̂k)> (adjoint iteration)

µk+1 = µk − B̌−1
k h(yk,uk) (augmented iteration),

(2)

where N(y,u, λ̂) = f (y,u) +G(y,u)>λ + h(y,u)>µ.
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Optimization history: One-shot with equality constraints using algorithmic differentiation (AD) and a constant preconditioner B̌

Challenges: Inequality constraints and the choice of the constraint multiplier preconditioner.

Aerodynamic Shape Optimization in SU2

The concepts are applied to aerodynamic shape optimization using the open-source multi-
physics package SU2 and

• drag coefficient cd and lift coefficient cl as competing
objectives,

• 38 Hicks-Henne design variables

• constraints on moment cm and thickness d,

• a steady, transonic Euler flow and the

•AD-based discrete adjoint solver in SU2 [4].

Challenge: Application to multi-disciplinary optimization in the context of fluid-structure
interaction (shape optimization, if possible topology optimization).

Robustness in MO Context

We consider a solution robust if it is not very sensitive to aleatory uncertainties ω. In
multi-objective design different concepts for finding robust solutions can be considered:

• expectation-based approach:
min
y,u

Exp(F(y,u,x(ω))) (I)

or
min
y,u

F(y,u, x̄) (II)

s.t.||Exp(F)− F|| ≤ ν,

• expectation-variance-based approach:
min
y,u

(Exp(F),Var(F)) (III)

or
min
y,u

F(y,u, x̄) (IV)

s.t.||Var(F)|| ≤ µ,
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The difference to single-objective robust optimization
is that we have

• a combined effect of uncertainties in objective space,
and

•we have to consider a set of robust solutions.

For aerodynamic shape optimization we consider ro-
bustness of type (I). The figure shows the effect of an
uncertain Mach number Ma ∼ N(0.8, 0.01) in objec-
tive space.

Challenge: Is it sufficient to look at statistical quantities? What about gains and losses?

Uncertainty Quantification

We make use of a non-intrusive polynomial chaos approach, in which the stochastic
objective function is expanded in terms of polynomials Φi that are orthogonal with respect
to the density function of the input random variables x(ω):

f (y,u,x(ω)) ≈
M∑
i=1

f̂i(y,u)Φi(x), f̂i(y,u) = γiE(f (y,u,x)Φi) ≈
Q∑
k=1

wif (y,u,xi).
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Robust Pareto points for uncertain Mach number (left) and geometry (right and designs)

The uncertain geometry (perturbed in normal direction by random process with expected function and co-
variance function) is modelled with the help of a truncated Karhunen-Loeve expansion and the computational
effort is reduced by using sparse grids for the Gauss-Hermite quadrature points (see [5]).
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