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Summary

The one-shot approach is traditionally used in the context of shape optimization with an underlying expensive partial
differential equation constraint. If the solution process for the partial differential equation can be interpreted as a fixed
point iteration, it can be augmented with an adjoint solver. Then, in the one-shot approach state and adjoint feasibility
are pursued simultaneously with optimality using a suitable preconditioner. In the present work we transfer the ideas of
one-shot optimization to the field of topology optimization. The structural analysis involving geometrical and material
non-linearities is realized with a Newton-like solver, that can be augmented by an adjoint solver. Several new challenges
for one-shot topology optimization like projection methods and filter methods are discussed. Results are presented for
topology optimization of nonlinear elastic structures in a two-dimensional setting to minimize compliance.
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1 Introduction

The one-shot approach, also referred to as simultaneous
analysis and design,1 can be applied for optimization
problems involving the solution of an underlying partial
differential equation. Especially for slowly converging
Newton-like PDE solvers it is advantageous to make use
of one-shot approaches instead of recovering state and
adjoint feasibility in each optimization step in a nested
fashion. The state solver can be interpreted as a fixed
point solver and can be augmented by a corresponding
discrete adjoint fixed point solver based on algorithmic
differentiation. In a one-shot approach, the state and adjoint
equation together with the design equation are iterated
simultaneously, e.g. by using a design space preconditioner
based on the doubly augmented Lagrangian.2 A summary
of one-shot approaches can be found in Bosse et al.3

So far, the one-shot approach has been mainly used
for shape optimization problems, e.g. in aerodynamic
applications.4 The main bottleneck for shape optimization
is the need to perform a mesh deformation or even
remeshing in each optimization step, that might become
overhead in the one-shot framework. For topology
optimization this problem is not apparent which can
be a high potential for one-shot optimization methods.
A popular nested approach for topology optimization
is the method of moving asymptotes.5 Simultaneous
analysis and design has been performed in the context of
topology optimization of truss structures6 and interior-point

multi-grid methods have been applied for the topology
optimization of linear elastic materials.7

We newly apply the one-shot approach based on Hamdi
and Griewank for the topology optimization of nonlinear
elastic materials. In this work we intend to formulate
challenges and first ideas in the direction of one-shot
topology optimization. Several concepts to project or filter
obtained sensitivities or design variables, that are essential
for topology optimization, have to be incorporated in the
one-shot framework.

2 The Topology Optimization Problem

The structural analysis for the nonlinear material under
large displacements is based on the principle of virtual
work. The resulting weak form of the equilibrium equation
in the current configuration V

R(u) :=
∫

V
σ : δedV −

(∫
V

f ·δudV +
∫

δV
t ·δuda

)
= 0

(1)
with the Cauchy stress tensor σ , the rate of deformation
tensor e, the virtual displacement field δu, the boundary
element da, the volume force f and the surface traction t
is discretized using a finite element approach and solved
iteratively with a Newton-Raphson scheme. The nonlinear
hyperelastic material is modeled as a Neo-Hookean solid.

For topology optimization we consider the mean
compliance as an objective function to maximize the
stiffness of the structure. Using the SIMP8 (Solid Isotropic
Material with Penalization) approach, the density ρe serves
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as a design variable and is used in each element e to
model areas containing material (ρe = 1) and void areas
(ρe = 0). The Young’s modulus Ee of an element is given
by Ee(ρe) = Emin + ρ

p
e (E −Emin), where p > 1 penalizes

densities between 0 and 1 and Emin > 0 is a very small
value representing the void regions in the stiffness matrix.
An additional constraint is imposed on the volume of the
resulting structure by prescribing a volume fraction fv > 0.
The resulting optimization problem to be solved reads

min
u,ρ

c(u,ρ) :=
∫

V f ·udV

s.t. R(u,ρ) = 0, (2)
V (ρ)/V0 = fv, 0≤ ρ ≤ 1.

3 The One-Shot Approach

3.1 General Description

Problem (2) can be discretized and the PDE constraint can
be written as a fixed point equation G(u,ρ)= u with ρ ∈Rn,
and λ , u ∈ Rm. In the following analysis we neglect the
additional constraints for the density, as these will be treated
separately by a projection method. The Lagrangian for
the discretized problem is L(u,ρ,λ ) = c(u,ρ)+(G(u,ρ)−
u)>λ = N(u,ρ,λ )− u>λ , where N(u,ρ,λ ) is the referred
to as the shifted Lagrangian. Based on the first-order
necessary optimality conditions and with a suitable chosen
preconditioner Bk the one-shot strategy can be formulated
as

uk+1 = G(uk,ρk)

ρk+1 = ρk−B−1
k Nρ(uk,ρk,λk)

>

λk+1 = Nu(uk,ρk,λk)
>.

(3)

The first iteration is the primal iteration solving the PDE
constraint. The second iteration is the design update and
the third iteration is the iteration procedure for the adjoint
vector λ . For a particular choice of penalty parameters
α and β it can be shown, that the doubly augmented
Lagrangian

La(u,ρ,λ ) =
α

2
‖G(u,ρ)−u‖2 +

β

2

∥∥∥Nu(u,ρ,λ )>−λ

∥∥∥2

+N(u,ρ,λ )−u>λ

is a suitable penalty function and that the update in (3) is
a descent direction for La for a large enough symmetric
positive definite preconditioner B. As a result, the one-shot
iteration can be used together with an appropriate line
search in a descent algorithm to find a stationary point of
the augmented Lagrangian.

It can be shown, that the preconditioner B is strongly
related to the Hessian ∇uuLa. In practice it is not computed
exactly but its inverse is approximated by means of a BFGS
update. If one identifies H with the approximated inverse of
B, the secant equation is given as Hk+1rk = ∆ρk with rk :=
∇ρ La(uk,ρk +∆ρk,λk)−∇ρ La(uk,ρk,λk). It is important
to apply this update only if the positive definiteness of

H is maintained, which is guaranteed when using a line
search to satisfy the second Wolfe condition. For reasons of
efficiency we use a backtracking line search in the following
and set B = I when the curvature condition rT

k ∆ρk > 0 is not
fulfilled, which is a common practice. We obtain

∇ρ La = αG>ρ (G−u)+βN>uρ(N
>
u −λ )+N>ρ (4)

with the reverse mode of algorithmic differentiation.

3.2 Challenges in Topology Optimization

There are several challenges inherent to topology
optimization, among them the following:

• The constraints for the density have to be fulfilled at
least for the optimal design. We propose to use a
projection step, that can be applied separately from the
updating scheme.

• The number of design variables is large which makes
the approximation of the design space preconditioner
very difficult. Additionally, the preconditioner itself
or an additional preconditioning step has to serve
as a filter to ensure mesh-independency and prevent
checkerboard patterns. We will investigate on the
potential of B and pursue two different approaches to
prevent checkerboard patterns.

• For the structural analysis of nonlinear materials
undergoing large displacement it can be advantegeous
to apply the load in an incremental fashion making the
underlying problem instationary. We do not consider
instationary problems in this context. There exists a
one-shot strategy for instationary PDE constraints.9

• As it is the case in nested approach, the found local
minimum depends highly on the chosen starting value.
This issue will not be treated in the following, but
in future work strategies like the continuation method
have to be adjusted to the one-shot framework.

3.3 Projection and Helmholtz Filtering

For fulfilling the volume constraint and the box constraints
in 2 we make use of a projection method proposed by
Tavakoli and Zhang.10 Let

D := {ρ ∈ Rn ; 1>ρ = fv ·V0, 0≤ ρ ≤ 1}

be the feasible set if all additional constraints are
incorporated in the Lagrangian and let ρ̄ be the density
after applying the one-shot update, then the projection of
ρ̄ into the feasible set is the unique minimizer of the box
constrained Lagrangian for 0≤ z≤ 1

L (z,µ) :=
1
2
‖z‖2

2− ρ̄
>z+

1
2
‖ρ̄‖2

2 +µ

(
1>z− fv ·V0

)
,

that can be found using a root finding method for µ . The
projection step is applied as a last optimization step.
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Figure 1: Numerical test case: Tip-loaded cantilever beam.

As a preconditioner of the design update we test the
one-shot preconditioner based on the doubly augmented
Lagrangian as explained in Section 3.1 and a preconditioner
similar to the Helmholtz-type preconditioners11 based on
the design update using the doubly augmented Lagrangian.
Let p present the unfiltered field and let p̃ present the
filtered field. We obtain the filtered design field by solving
the Helmholtz-type PDE with homogeneous Neumann
boundary conditions

−r2
∇

2 p̃+ p̃ = p

∂ p̃
∂n

= 0,

where r is the filter radius. We apply the filtering for
the reduced gradient of the doubly augmented Lagrangian
given in (4), such that p =−∇ρ La.

4 Numerical Example

We consider an example for stiffness optimization in
a two-dimensional setting assuming plane stress. The
solution procedure for the structural analysis is provided in
the open-source framework SU2,12, 13 that also provides the
basis for the discrete adjoint iteration based on algorithmic
differentiation. The finite element analysis is performed
using 4-node elements.

The material is modeled with a Young’s modulus of
2GPa and a Poisson ratio of 0.4. We consider the
minimization of end compliance for a tip-loaded cantilever
beam presented in Figure 1. The results are presented for a
load of 100N. The domain of 100 cm× 25 cm is discretized
using 80 by 20 finite elements.

We make use of the volume projection method presented
above to avoid the occurrence of checkerboard patterns.
The volume fraction fv is chosen to have a value of 0.4.
Furthermore, we choose the factors α = 2 and β = 10−4

for the doubly augmented Lagrangian and a penalty factor
p = 3. It is common to choose α greater than β , but
the parameter β found with the help of manual tuning is
very small in comparison to one-shot shape optimization
test cases. Using the one-shot preconditioner presented
in Section 3.1 we obtain a design with grey areas, which
represents densities between 0 and 1. Additionally, the
convergence history shows a staircase profile which shows
that the preconditioner tends to choose primal and dual
convergence over design convergence and still needs tuning.
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Figure 2: Optimization history for the minimization of
end-compliance.

Figure 3: Optimized design after 250 iterations.

As grey areas are not admissible for the optimization, we do
not stick to the classical approach.

Instead, in the following we will use the Helmholtz-type
filtering method presented in Section 3.3 with a filter radius
of r = 2 and the same values for α and β . A backtracking
line search using the reduced gradient of the doubly
augmented Lagrangian is employed. The convergence
history is shown in Figure 2 and the resulting optimized
design is given in Figure 3.

The obtained design is a typical end-compliance design
for a small load. The primal solution converges in 25
iterations. The used method needs around 200 outer
iterations and 200 inner iterations to converge. As the
material does not exhibit a highly nonlinear behavior under
the given load, the method will also converge for α = 0 and
β = 0. The corresponding convergence history presented
by the dotted line is very similar, but the method will need
and additional number of around 150 inner iterations. This
shows, that the use of the doubly augmented Lagrangian
speeds up the convergence of the optimization.

5 Summary and Outlook

We have formulated challenges for one-shot topology
optimization and have applied a one-shot approach based on
Helmholtz filtering and a volume projection to a numerical
test case. The method has proven to be feasible for the given
topology optimization problem. For the conference we will
present further results for nonlinear materials. As under the
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currently used load the material does not show the typical
nonlinear behavior, we plan to increase the load or use
different material properties. Especially, we will compare
our results to classical topology optimization approaches.
Further work will include the investigations on a suitable
preconditioner. The long-term objective is to apply the
presented approach to multiphysics real-world applications.
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