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Turbulence and Modeling

• For this subject, let me quote Heisenberg.

– ”When I meet God, I am going to ask him two questions: Why
relativity? And Why turbulence? I really believe he will have an
answer for the first.”

– ”An expert is someone who knows the worst mistakes that can be
made in his subject, and how to avoid them”

• Caveat: I certainly do not consider myself an expert in either turbulence
or the modeling of turbulence.

– However, I have studied these subjects with experts. In addition, my
graduate work and dissertation concerned turbulence.

– My focus is on Mathematics and Numerical Analysis



Outline of Discussion

• Brief discussion of 3 hierarchel models

– One-equation model

– Two-equation model

– Some issues in solving two-equation model

– Full Reynolds stress model (RSM)

• Brief discussion of current solution algorithm

• Some numerical results

• Perspective on solving transport equations

– Mathematical foundation and formulation

– Strong solution algorithms

– Stiffness issues

– Positivity and realizability

– Linear and nonlinear stability

– Summary of some key solution algorithm properties



Compressible Reynolds-Averaged Navier-Stokes
Equations

Integral form of the 3-D Reynolds-averaged Navier-Stokes equations∫∫∫
V

∂W
∂t

dV +
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S
F · ndS = 0,

where the solution vector

W = [ρ ρu ρv ρw ρE]T

and the flux density tensor F = Fc + Fv, with

Fc = [ρq ρuq + pex ρuq + pey ρwq + pez ρHq]T

Fv = −[0 τ · ex τ · ey τ · ez τ · q + k∇T ]T

where q = uex + vey + wez, and τ is the stress tensor.



One Equation Turbulence Model

• One-equation model of Spalart-Allmaras (La Recherche Aerospatiale 1
1994)
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where the eddy viscosity is determined from

µt = ρν̃fv1,
and
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ρ
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• Implementation

– Advection terms: First order, non-conservative discretization
– Boundary Conditions: solid surfaces (ν̃ = 0); free stream (ν̃ = 3ν∞)



Two Equation Turbulence Model

• A form of the two-equation k-ω model of Wilcox (Turbulence Modeling
for CFD 2006) is given by
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where the production and destruction terms are given by

Pk =
µt
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|Ω|2, Pω = α

ω

k

µt
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|Ω|2, Dk = β∗kω, Dω = βω2

• To reduce the magnitude of µt when the production of the turbulence
energy exceeds the dissipation rate, a stress limiter is introduced:

ω̃ = max

ω, Clim

√
2Ω̄ijΩ̄ij

β∗

 , Clim = 0.95.



Two Equation Turbulence Model

• Solid wall boundary conditions (Menter [AIAA J. 1994]):

k = 0, ω = ωw =
60µ1

ρ1β(d1)2
.

• Free-stream boundary conditions [NASA TM 1998-208444]:

k = k∞ = 9× 10−9 u2
∞, ω = ω∞ = 1× 10−6

(
u2
∞

ν∞

)
.

• The turbulent viscosity is computed by

µt =
ρk

ω̃



Issues in Solving Two-Equation Model

• Ensuring positivity of dependent variables of turbulence model equations

• Imbalance between production and destruction terms

– Such an imbalance occurs in regions where ω becomes small
∗ Allows disturbances in the strain rate
∗ Results in large values of µt

∗ Production term becomes very large when ω goes to zero and µt is
finite

– To prevent excessively large Pk term, we use the constraint suggested
by Menter

P̃k = min(Pk, 20Dk)



Full Reynolds Stress Model (RSM)

• A form of the SSG/LRR full RSM [Eisfeld, 2004] is given by
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where the production term is given by
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and the dissipation is modeled with (ε = Cµk̂ω , k̂ = R̂ii/2)

ρ̄εij =
2
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ρ̄εδij



Full Reynolds Stress Model (RSM)

• Note the following

ρ̄R̂ij = −τij = ρu′′i u′′j

• The diffusion term is modeled by

ρ̄Dij =
∂

∂xk

[(
µ̄δk` + D
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Cµω

)
∂R̂ij
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]

• For details on modeling of the pressure-strain correlation (ρ̄Πi,j)

– NASA Turbulence Modeling Resource (TMR)

– Eisfeld [DLR, ISSN 1614-7790, 2004]

• Reynolds stresses are zero at solid wall boundary, and BC for ω is the
same as for Wilcox 2006 model.



RK/Implicit Scheme

• Consider a multistage scheme (e.g, Runge-Kutta)

W(0) = Wn

W(q) = W(0) − αq LW(q−1), q = 1, ..., s

Wn+1 = W(q)

L is the complete difference operator.

• Suppose we introduce an implicit preconditioner P−1 on stage q

W(q) = W(0) − αq P−1
q LW(q−1)

where

Pq =
(

1
CFL (∆t)

)
I +

(
∂R
∂W

)
q

• The resulting scheme ∈ of the general class of implicit RK schemes

• Now, we have to determine the discrete implicit operator.



Inverse of Implicit Operator

• Consider the preconditioner

Pq =
(

1
CFL (∆t)

)
I +

(
∂R
∂W

)
q

• The inverse of the preconditioner Pq is approximated.

• Stiff discrete equations are considered.

– Point SGS and partial line SGS relaxation used to approx. P−1
q .

– Sufficient approx. with 2 SGS sweeps for each relaxation type

– CFL is between 103 and 106

• Implementation details of RK/Implicit scheme given in

– Rossow [JCP 2007]

– Swanson et al. [JCP 2007],

– Swanson, Rossow [Comput. Fluids 2011]



Numerical Results

• Numerical solutions for airfoil flows

– Nakayama A-Airfoil

– RAE Airfoil

– NACA 4412 Airfoil



Convergence Histories for Nakayama A-Airfoil

k-ω Model, α = 0o, M = 0.088, Re = 1.2× 106

(a) Implicit AF Scheme (b) RK/Implicit Scheme



Convergence Histories for Nakayama A-Airfoil

k-ω Model, α = 0o, M = 0.088, Re = 1.2× 106

(a) Implicit AF Scheme (b) RK/Implicit Scheme



Results for Nakayama A-Airfoil

k-ω Model, α = 0o, M = 0.088, Re = 1.2× 106

Surface Pressure and Skin-Friction Distributions (RK/Implicit Scheme)



Convergence Histories with RSM for Nakayama A-Airfoil

Reynolds Stress Model, α = 0o, M = 0.088, Re = 1.2× 106

Computations with Implicit AF Scheme and Reynolds Stress Model



Convergence Histories for RAE 2822 Airfoil: Subsonic

α = 1.93o, M = 0.676, Re = 5.7× 106
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Convergence Histories for RAE 2822 Airfoil: Transonic

α = 2.79o, M = 0.730, Re = 6.5× 106
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Results for RAE 2822 Airfoil: Transonic

α = 2.79o, M = 0.730, Re = 6.5× 106
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Convergence Histories for RAE 2822 Airfoil: Transonic

α = 2.81o, M = 0.750, Re = 6.2× 106
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Results for RAE 2822 Airfoil: Transonic

α = 2.81o, M = 0.750, Re = 6.2× 106
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Convergence Histories for NACA 4412 Airfoil

High Angle of Attack (α)

α = 13.87o, M = 0.09, Re = 1.52× 106

NACA 4412: RK/Implicit scheme, k-ω model



Results for NACA 4412 Airfoil

High Angle of Attack (α)

α = 13.87o, M = 0.09, Re = 1.52× 106
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Turbulent Viscosity Contours

High Angle of Attack (α)

α = 13.87o, M = 0.09, Re = 1.52× 106

Upper LE Region, 1988 Wilcox Model

(a) No production limiter (b) Production limiter



Turbulent Viscosity Contours and Streamines

High Angle of Attack (α)

α = 13.87o, M = 0.09, Re = 1.52× 106

Lower LE Region, 1988 Wilcox Model

(a) No production limiter (b) Production limiter



Turbulent Viscosity Contours and Streamines

High Angle of Attack (α)

α = 13.87o, M = 0.09, Re = 1.52× 106

Lower and Upper LE Region, 2006 Wilcox Model

(a) No production limiter (b) No production limiter



Navier-Stokes (N-S) Equations

• Mathematical foundation

– Need to solve: Problem of well-posedness, regularity, and global
existence

– Progress made for particular cases.
– Problem in general remains unsolved

• Transport equations for turbulence models

– Form is similar to that for N-S equations.
– Mathematical foundation is not established.

• Thus, we do not know a priori for the transport equations

– If a solution exist
– Possibly, there are multiple solutions

• Existence of a realistic solution to the transport equations depends only
on numerical demonstrations.



Mathematical Formulation for Turbulent Flow Problems

• Issues

– Often, complete descriptions of continuous and discrete problems are
not given

– BCs are not always stated, and often are only approximate
– Sometimes, a boundary-value problem is not even be solved for each

iteration (e.g., wall BC for ω equation).

• There is usually neglect of a proper study of the mathematical properties
of transport equations

– This is even true when mean flow and turbulence model equations are
weakly coupled.

– Exception has been with the Spalart-Allmaras (SA) model.

• Even without mathematical questions, additional numerical difficulties
can occur

– When considering two or more transport equations (i.e., PDE related
to length scale equation used)

– Increased stiffness of system of equations



Mathematical Formulation for Turbulent Flow Problems

• Thus, the reliability of using such models on a routine basis for industrial
application can be problematic.

Conjecture 1 The construction of a reliable and efficient algorithm
for solving the transport equations of a turbulence model, either weakly
or strongly coupled to the Reynolds average N-S (RANS) equations, is
highly unlikely, in general, without complete mathematical and numerical
analysis of the system or systems of equations.



Another View of Turbulence Modeling

• Generally, we consider turbulence modeling a direct problem

– Model parameters determined by comparing solutions and data for
range of problems.

– Solve RANS equations with given turbulence model

• One can consider turbulence modeling an inverse problem, as suggested
by S. Langer [Habilitation, 2017].

– Then, we have a parameter identification problem
– Reconstruct the eddy viscosity from given data

• Indicators that inverse problem is ill-posed

– More than one turbulence model of a given type gives essentially same
surface Cp and Cf values.

– Small perturbation in Cp variation can yield different solution and µt.

• Such observations suggest that turbulence modeling by its mathematical
nature is an ill-posed problem.



Developing of Turbulence Models

• Developers of turbulence models

– Again, generally give little attention to solving equations of model
– Difficulties arise due to both stiffness issues and source terms

• Need to consider two factors in modeling of turbulence

– Ultimately, the success of model depends on heuristics of model.
– Models with more than one equation are not based upon first principles

derivations.

• Consider a two-equation model

– One equation is turbulence kinetic energy (TKE) equation derived
from first princples.

– Second equation is used to give a length scale; it is kludged up (as
Peter Bradshaw might say)

∗ Form of equation based on that of TKE equation
∗ Example: equation for turbulence dissipation rate (ω)
∗ Eddy viscosity is µt = ρk/ω.



Developing of Turbulence Models

• The two factors previously given suggest that there is flexibility in
changing model to make amenable to solving equations.

• The essential requirements for changing model

– Must maintain integrity of model.
– Must verify the modified model for standard test cases used to calibrate

parameters of model.



Strong Solution Algorithms

• Assume RANS and transport equations are weakly coupled.

• Numerical algorithms for both RANS and transport equations

– Should both belong to the class of strong solution algorithms

– Would like algorithms to be the same to allow eventually a strongly
coupled solver

– Must be highly implicit: L-stability is desired to solve stiff systems.

– Algorithm must be unconditionally stable in linear sense, including
BCs.

– Fluid dynamics equations highly nonlinear in general → desirable to
have nonlinear stability

– Same stability properties should apply to solvers for mean flow and
transport equation.



Stiffness Issues Concerning Transport Equations

• No generally accepted mathematical definition of stiffness.

• Some examples of stiff systems:

– Linear constant coefficient system with large stiffness ratio

– Stability requirements rather than accuracy restrict stepsize

• Two fundamental sources of stiffness

– Systems of PDEs themselves
∗ Large condition number (stiffness number) for compressible Euler or

Navier-Stokes equations as M → 0
∗ Source terms of turbulence modeling equations create stiff systems.

– Discrete resolution of viscous terms using stretched grids results in
stability determining stepsize.

• Stiff ODEs require strongly implicit schemes for an effective solution
algorithm.



Positivity and Realizability

• Need for Positivity Preserving Scheme

– Requirement of positivity for thermodynamic variables of mean flow
equations

– For two-equation model (e.g., k − ω model of Wilcox),

∗ Need to ensure positivity of k and ω

∗ Eddy viscosity µt = ρk/ω > 0

– For full RSM, dependent variables include Reynolds stresses
∗ Need to ensure positivity of normal Reynolds stresses and ω

∗ Realizability conditions: ρu′′i u′′i ≥ 0, (ρu′′i u′′j )2 ≤ ρu′′i u′′i ρu′′j u′′j

• For turbulence models, there are 3 methods used to ensure positivity of
dependent variables.

– Explicitly enforce positivity

– Replace k, ω with ln(k), ln(ω) (Ilinca and Pelletier, [IJTS 1999])

∗ Need wall function since k vanishes at solid wall boundary

∗ Approach can experience difficulties with upper bound on µt.



Positivity and Realizability

• Replace ω with ln(ω) (Bassi et al, [Comput Fluids, 2005])

– Limiting k

– Imposing lower bound on ω using realizability conditions

∗ Positive normal Reynolds stresses
∗ Satisfying Schwarz inequality for Reynolds shear stresses.

• Construct M-matrix (Mor-Yossef [JCP 2006])

– A semi-positive matrix with positive eigenvalues

– Used to approximate Jacobian of transport equations

– A non-singular M-matrix has convergent regular splitting and positive
inverse.

– These properties guarantee

∗ Unconditional linear stability

∗ Positivity of dependent variables in turbulence equations

– Note: M-matrix approach does not appear to have a counterpart for
mean flow equations.



Linear and Nonlinear Stability

• Linear stability

– Local mode analysis (Fourier transform of linear equations)

– For initial-boundary value (IBV) problems, it is beneficial to consider
energy stability.

∗ Allows variable coefficents

∗ Includes boundary conditions

• Eigensystem analysis for IBV problems

• With Krylov method, using Arnoldi algorithms, one can determine
stability behavior of actual discrete problem being solved (Langer [JCP
2014]).



Linear and Nonlinear Stability

• Nonlinear stability

– Generally not included in constructing numerical algorithms

– Nonlinearity can have significant effects such as producing spurious
oscillations, occurring in

∗ Under-resolved regions

∗ Neighborhood of discontinuities such as shock waves

• For this purpose, we consider entropy stability.

• Entropy stability guarantees that the thermodynamic entropy is bounded
for all time in L2 under two conditions (Carpenter et al. [AIAA 2013]).

– ρ, T > 0
– Boundary data results in a well-posed problem and preserves entropy

estimate.

• To construct entropy stable scheme, a convex function is required.



Linear and Nonlinear Stability

• Entropy function

– Mathematical function

– Negative of thermodynamic entropy of gas dynamics

• Global conservation of entropy is derived from transforming (contracting)
N-S equations using

– Entropy function and

– Integrating over the domain

• By mimicking each term of this equation discretely, we can obtain a
semi-discrete entropy estimate.

• Using procedure of Tadmor [Acta Numerica, 2003] called comparison of
arguments, conditions that guarantee entropy stability can be established.

• Considering entropy stability for algorithm to solve transport equations
of turbulence model requires

– Appropriate entropy function

– Again, proving well-posedness for discrete problems



Summary: Solution Algorithms

• Basic elements

– Implicit scheme
∗ Required for stiff equations (L-stability)
∗ Point and line relaxation to invert implicit operator
∗ Parallelizability

– Multigrid or emulator
∗ Scheme with good smoothing properties
∗ Multistage framework for scheme to enhance eigenvalue clustering

• A class of strong algorithms

– Basic elements
– Minimized inconsistencies: implicit operator and residual function
– Newton-Krylov methods
∗ Effective preconditioner
∗ Multigrid in linear solver



Summary: Solution Algorithms

• Enhanced robustness with Adaptive Algorithms

– Local measures of stability and resolution
– Enriched local resolution
– Variable order of discretization
– Additional local relaxation due to high residuals
– Modification of algorithm parameters
– Modified local relaxation strategy

• Ensure positivity

• Contruct schemes with entropy (nonlinear) stability


