CoDiPack  2.3.0
A Code Differentiation Package
SciComp TU Kaiserslautern
Loading...
Searching...
No Matches
binomial.hpp
1/*
2 * CoDiPack, a Code Differentiation Package
3 *
4 * Copyright (C) 2015-2024 Chair for Scientific Computing (SciComp), University of Kaiserslautern-Landau
5 * Homepage: http://scicomp.rptu.de
6 * Contact: Prof. Nicolas R. Gauger (codi@scicomp.uni-kl.de)
7 *
8 * Lead developers: Max Sagebaum, Johannes Blühdorn (SciComp, University of Kaiserslautern-Landau)
9 *
10 * This file is part of CoDiPack (http://scicomp.rptu.de/software/codi).
11 *
12 * CoDiPack is free software: you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, either version 3 of the
15 * License, or (at your option) any later version.
16 *
17 * CoDiPack is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty
19 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 * See the GNU General Public License for more details.
22 * You should have received a copy of the GNU
23 * General Public License along with CoDiPack.
24 * If not, see <http://www.gnu.org/licenses/>.
25 *
26 * For other licensing options please contact us.
27 *
28 * Authors:
29 * - SciComp, University of Kaiserslautern-Landau:
30 * - Max Sagebaum
31 * - Johannes Blühdorn
32 * - Former members:
33 * - Tim Albring
34 */
35#pragma once
36
37#include "../config.h"
38#include "macros.hpp"
39
41namespace codi {
42
56 CODI_INLINE size_t constexpr binomial(size_t n, size_t k) {
57 // clang-format off
58 return
59 k == 0 ? 1 : (
60 n < k ? 0 : ( // Outside of the domain we assume zero values.
61 n == k ? 1 : (
62 /* default */ binomial(n - 1, k - 1) + binomial(n - 1, k)
63 )));
64 // clang-format on
65 }
66}
#define CODI_INLINE
See codi::Config::ForcedInlines.
Definition config.h:457
CoDiPack - Code Differentiation Package.
Definition codi.hpp:91
size_t constexpr binomial(size_t n, size_t k)
Binomial coefficient computation.
Definition binomial.hpp:56